Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:14:28.679Z Has data issue: false hasContentIssue false

High-Temperature Indentation of Natural Diamond and the Quest for Lonsdaleite

Published online by Cambridge University Press:  15 February 2011

P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106
A. Garg
Affiliation:
Now at: NASA Lewis Research Center, Cleveland, OH 44135
X. J. Ning
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106
J. W. Yang
Affiliation:
Now at: APA Optics, Inc., Blaine, MN 55434
S. Q. Xiao
Affiliation:
Now at: National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

Attempts were made to produce bands of hexagonal diamond (Lonsdaleite) by high-temperature indentation of cubic diamond. (011) wafers of type I diamond were indented over the temperature range 1000–1300°C and the microstructure of the indentation plastic zone investigated by transmission electron microscopy (TEM). No hexagonal diamond was produced; instead, the plastic zone consisted of arrays of dislocations lying on the {001} planes. A possible mechanism for the generation of such dislocations, and reasons for the absence of hexagonal diamond, are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eremenko, V. G. and Nikitenko, V. I., phys. stat. sol. (a) 14, 317330 (1972).Google Scholar
2. Eremenko, V. G., Sov. Phys. Solid State 17, 16471648 (1976).Google Scholar
3. Pirouz, P., Chaim, R. and Samuels, J., Izvestia, Nauka S.S.S.R., Ser. Fiz. 51, 753762 (1987) (In Russian). In English see Bulletin of the Academy of Sciences of the U.S.S.R., Physical Series, 51, #9 (1987).).Google Scholar
4. Pirouz, P., Chaim, R. and Dahmen, U., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J. and Davies, G. (Mater. Res. Soc. Proc. 104, Pittsburgh, PA., 1988), pp. 133138.Google Scholar
5. Pirouz, P., Chaim, R., Dahmen, U. and Westmacott, K. H., Acta metall. mater. 38, 313322 (1990).Google Scholar
6. Dahmen, U., Westmacott, K. H., Pirouz, P. and Chaim, R., Acta metall. mater. 38, 323328 (1990).Google Scholar
7. Pirouz, P., Dahmen, U., Westmacott, K. H. and Chaim, R., Acta metall. mater. 38, 329336 (1990).Google Scholar
8. Xiao, S.-Q. and Pirouz, P., J. Mater. Res. 7, 14061412 (1992).Google Scholar
9. Hanneman, R. E., Strong, H. M. and Bundy, F. P., Science (New York) 155, 995997 (1967).Google Scholar
10. Frondel, C. and Marvin, U. B., Nature (London) 214, 587589 (1967).Google Scholar
11. Bundy, F. P. and Kasper, J. S., J. Chem. Phys. 46, 34373446 (1967).Google Scholar
12. Evans, T. and Wild, R. K., Phil. Mag. 12, 479489 (1965).Google Scholar
13. Ning, X. J., Perez, T. and Pirouz, P., Phil. Mag. In press. (1995).Google Scholar
14. Garg, A., Ning, X. J. and Pirouz, P., In preparation. (1995).Google Scholar
15. Cherns, D. and Preston, A. R., Proceedings of the XIth Int. Cong. on Electron Microscopy, Kyoto, Japan, (1986).Google Scholar
16. Pirouz, P., Cockayne, D. J. H., Sumida, N., Hirsch, P. B. and Lang, A. R., Proc. Roy. Soc. Lond. A 386, 241249 (1983).Google Scholar
17. Brookes, C. A., Brookes, E. J. and Xing, G., in Mechanical Behavior of Diamond and Other Forms of Carbon, edited by Drory, M., Bogy, D., Donley, M. and Field, J. (Mater. Res. Soc. Proc. 383, Pittsburgh, PA, 1995), pp.Google Scholar
18. Humble, P. and Hannink, R. H. J., Nature (London) 273, 3739 (1978).Google Scholar
19. Qin, C. D. and Roberts, S. G., in Structure and Properties of Dislocations in Semiconductors, edited by Roberts, S. G., Holt, D. B. and Wilshaw, P. R. (Inst. Phys. Conf. Ser. No. 104, Bristol, 1989), pp. 321326.Google Scholar
20. Schmid, E. and Boas, W., Kristallplastizitat, (Springer Verlag, Berlin, 1935).Google Scholar
21. Lacombe, P. and Beaujard, L., J. Inst. Met. 74, 1- (1947).Google Scholar
22. Cottrell, A. H., Phil. Mag. 43, 645647 (1952).Google Scholar
23. Lomer, W. M., Phil. Mag. 42, 13271331 (1951).Google Scholar
24. Karnthaler, H. P., Phil. Mag. A 38, 141156 (1978).Google Scholar
25. Hirsch, P. B., Pirouz, P., Roberts, S. G. and Warren, P. D., Phil. Mag. B 52, 761784 (1985).Google Scholar
26. Alexander, H., Eppenstein, H., Gottschalk, H. and Wendler, S., Journal of Microscopy 118, 1321 (1980).Google Scholar