Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:16:03.878Z Has data issue: false hasContentIssue false

High-Temperature Dielectric Polyimide Films for Energy Storage Applications

Published online by Cambridge University Press:  06 June 2013

David H. Wang
Affiliation:
Materials & Manufacturing Directorate, Soft-Matter Materials Branch (AFRL/RXAS), Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7750 UES Inc., Dayton OH, 45432
Brian A. Kurish
Affiliation:
Materials & Manufacturing Directorate, Soft-Matter Materials Branch (AFRL/RXAS), Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7750 UES Inc., Dayton OH, 45432
Imre Treufeld
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Lianyun Yang
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Lei Zhu
Affiliation:
Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Loon-Seng Tan*
Affiliation:
Materials & Manufacturing Directorate, Soft-Matter Materials Branch (AFRL/RXAS), Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7750
Get access

Abstract

Two new diamines containing three nitriles are synthesized via a 3-step route. They are polymerized with four commercial dianhydrides (i.e. 6FDA, OPDA, BTDA and PMDA) in N,N-dimethylacetamide (DMAc) to afford poly(amic acid)s, which are thermally cured at temperatures up to 300 °C to form tough, creasable films. Most of these polyimides are soluble in common solvents. Their glass transition temperatures range from 216 to 341 °C. The polyimides are stable up to 400 °C. The dielectric constants of these OPDA-based polyimides increase from 2.9 (CP2) to 4.7 as measured by the D-E loops.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(a) Guo, M., Yan, X., Kwon, Y., Hayakawa, T., Kakimoto, M.-a., Goodson, T. III., J. Am. Chem. Soc., 128, 14820 (2006); (b) M. Guo, T. Hayakawa, M.-a. Kakimoto, T. Goodson, III, J. Phys. Chem. B 115, 13419 (2011).CrossRefGoogle Scholar
Chisca, S., Musteata, V. E., Sava, I., Bruma, M., Eur Polym J. 47, 1186 (2011).CrossRefGoogle Scholar
Jacobs, J. D., Arlen, M. J., Wang, D. H., Ounaies, Z., Berry, R., Tan, L. S., Garrett, P. H., Vaia, R. A., Polymer 51, 3139 (2010).CrossRefGoogle Scholar
Young, J. A., Farmer, B. L., Hinkley, J. A., Polymer 40, 2787 (1999).CrossRefGoogle Scholar
Park, C., Ounaies, Z., Wise, K.E., Harrison, J.S., Polymer 45, 5417 (2004).CrossRefGoogle Scholar
Ounaies, Z., Park, C., Harrison, J. S., Smith, J. G., Hinkley, J., SPIE 3669, 171 (1999).Google Scholar
Saxena, A., Prabhakaran, P.V., Rao, V.L., Ninan, K.N., Polym.Int. 54, 544 (2005).CrossRefGoogle Scholar
Li, Y.S., Tong, Y.J., Jing, K., Ding, M.X., Chinese J Polym Sci 19, 13 (2001).Google Scholar
Li, L., Kikuchi, R., Kakimoto, M.-A., Jikei, M., Takahashi, A., High Perform Polym 17, 135 (2005).CrossRefGoogle Scholar
Kang, H. A., Chung, I. S., Kakimoto, M.-A., Kim, S. Y., Polym. J. 33, 284 (2001).CrossRefGoogle Scholar
(a) Hamciuc, C., Hamciuc, E., Ignat, M., Zarnescu, G., High Perform. Polym. 21, 205 (2009); (b) ibid, 22, 225 (2010).CrossRefGoogle Scholar
Gonzalo, B., Vilas, J. L., Breczewski, T., Pérez-Jubindo, M. A., De La Fuente, M. R., Rodriguez, M., León, L. M., J. Polym. Sci. Part A: Polym. Chem., 47, 722 (2009).CrossRefGoogle Scholar
Wang, D. H., Riley, J. K., Fillery, S. P., Durstock, M. F., Vaia, R. A., Tan, L.-S., Polym. Prepr. 51(2), 522 (2010).Google Scholar
Amaranatha Reddy, R., Sadashiva, B. K., Liq. Cryst., 30, 273 (2003).CrossRefGoogle Scholar
(a) Wang, D. H., Lee, K. M., Yu, Z., Koerner, H., Vaia, R. A., White, T. J., Tan, L.-S., Macromolecules 44, 38403846(2011); (b) K. M. Lee, D. H. Wang, H. Koerner, R. A. Vaia, L.-S. Tan, T. J. White, Angew. Chem. Int. Ed. 51, 4117–4121(2012).CrossRefGoogle Scholar