Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T05:49:16.106Z Has data issue: false hasContentIssue false

High-Energy Electron and Proton Irradiation of Cu(In,Ga)Se2 Heterojunction Solar Cells

Published online by Cambridge University Press:  21 March 2011

A. Jasenek
Affiliation:
Institute of Physical Electronics (ipe), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
A. Boden
Affiliation:
Hahn-Meitner-Institut (HMI), Glienicker Straβe 100, 14109 Berlin, Germany
K. Weinert
Affiliation:
Institute of Physical Electronics (ipe), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
M. R. Balboul
Affiliation:
Institute of Physical Electronics (ipe), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
H. W. Schock
Affiliation:
Institute of Physical Electronics (ipe), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
U. Rau
Affiliation:
Institute of Physical Electronics (ipe), University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

We investigate radiation-induced defects in high-efficiency Cu(In,Ga)Se2/CdS/ZnO heterojunction solar cells after 1-MeV electron and 4-MeV proton irradiation. We use electron and proton fluences of more than 1018 cm−2 and up to 1014 cm−2, respectively. The irradiation experiments performed at three independent electron irradiation facilities consistently prove the superior radiation resistance of these Cu(In,Ga)Se2 devices compared to other types of solar cells. The reduction of the solar cell efficiency in all experiments is predominantly caused by a loss ΔVOC of the open circuit voltage VOC. An analytical model describes ΔVOC in terms of radiation-induced defects enhancing recombination in the Cu(In,Ga)Se2 absorber material. From our model we extract the defect introduction rates for recombination centers in Cu(In,Ga)Se2 for the respective particles and energies. Isochronal annealing steps fully recover VOC of the irradiated Cu(In,Ga)Se2 solar cells. Exposure to temperatures of approx. 400 K are sufficient to restore the initial VOC within less than 5 %, even after excessive irradiation. The annealing process displays an activation energy of EA = 1.1 eV. Admittance spectroscopy directly reveals the generation and the annealing of radiation-induced defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tuttle, J. R., Szalaj, A., and Keane, J., in Proc. 28th IEEE Photovolt. Spec. Conf. (in press).Google Scholar
[2] Hartmann, M., Schmidt, M., Jasenek, A., Schock, H. W., Kessler, F., Herz, K., and Powalla, M., in Proc. 28th IEEE Photovolt. Spec. Conf. (in press).Google Scholar
[3] Gay, C. F., Potter, R. R., Tanner, D. P., and Anspaugh, B. E., in Proc. 17th IEEE Photovolt. Spec. Conf. (IEEE, Piscataway, 1984), p. 151.Google Scholar
[4] Mickelsen, R. A., Chen, W. S., Stanbery, B. J., Dursch, H., Stewart, J. M., Hsiao, Y. R., and Devaney, W., in Proc. 18th IEEE Photovolt. Spec. Conf. (IEEE, Piscataway, 1985), p. 1069.Google Scholar
[5] Hisamatsu, T., Aburaya, T., and Matsuda, S., in Proc. 2nd World Conf. on Photovolt. Energy Conv., Schmid, J., Ossenbrink, H.A., Helm, P., Ehmann, H., and Dunlop, E.D., eds. (E. C. Joint Research Centre, Luxembourg, 1998), p. 3568.Google Scholar
[6] Burgess, R. M., Deveney, W. E., and Chen, W. S., in Proc. 24th IEEE Photovolt. Spec. Conf. (IEEE, Piscataway, 1988), p. 1465.Google Scholar
[7] Schock, H. W. and Bogus, K., in Proc. 2nd World Conf. on Photovolt. Energy Conv., Schmid, J., Ossenbrink, H.A., Helm, P., Ehmann, H., and Dunlop, E.D., eds. (E. C. Joint Research Centre, Luxembourg, 1998), p. 3586.Google Scholar
[8] Roche, G. La, Hoesselbarth, B., and Bogus, K., in Proc. 16th Europ. Photov. Solar Energy Conf., Scheer, H., McNelis, B., Palz, W., Ossenbrink, H. A., and Helm, P., eds. (James & James, London, 2000), p. 945.Google Scholar
[9] Jasenek, A. et al., p. 982 in Ref. [8].Google Scholar
[10] Walter, T., Herberholz, R., Müller, C., and Schock, H. W., J. Appl. Phys. 80, 4411 (1996).Google Scholar
[11] Boden, A., Bräunig, D., Klaer, J., Karg, F. H., Hösselbarth, B., and Roche, G. La, in Proc. 28th IEEE Photovolt. Spec. Conf. (in press).Google Scholar
[12] Rau, U., Jasenek, A., Schock, H. W., Engelhardt, F., and Meyer, Th., Thin Solid Films 361–362, 299 (2000).Google Scholar
[13] Rau, U., Schmidt, M., Jasenek, A., Hanna, G., and Schock, H. W., Sol. Energy Mater. Sol. Cells 67, 137 (2001).Google Scholar
[14] Jasenek, A. and Rau, U., J. Appl. Phys. (2001) (in press).Google Scholar
[15] Jasenek, A., Rau, U., Hahn, T., Hanna, G., Schmidt, M., Hartmann, M., Schock, H. W., Werner, J. H., Schattat, B., Kraft, S., Schmid, K.-H., and Bolse, W., Appl. Phys. A 70, 677 (2000).Google Scholar
[16] Rau, U., Jasenek, A., Schock, H. W., Werner, J. H., Roche, G. La, Robben, A., and Bogus, K., in Proc. 28th IEEE Photovolt. Spec. Conf. (in press).Google Scholar
[17] Herberholz, R., Igalson, M., and Schock, H. W., J. Appl. Phys. 83, 318 (1998).Google Scholar
[18] Yamaguchi, M., Ando, K., Yamamoto, A., and Uemura, C., J. Appl. Phys. 58, 568 (1985).Google Scholar