Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T12:33:41.854Z Has data issue: false hasContentIssue false

High Temperature Deformation in the Amorphous or Partially Crystallized Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass

Published online by Cambridge University Press:  11 February 2011

Q. Wang
Affiliation:
Génie Physique et Mécanique des Matériaux (GPM2), Institut National Polytechnique de Grenoble (INPG), UMR CNRS 5010, FR CNRS 2145, B.P. 46, 38042 Saint-Martin d'Hères, France GEMPPM, INSA Lyon, UMR CNRS 5510, FR CNRS 2145, Bat. B. Pascal, 69621 Villeurbanne, France
J.J. Blandin
Affiliation:
Génie Physique et Mécanique des Matériaux (GPM2), Institut National Polytechnique de Grenoble (INPG), UMR CNRS 5010, FR CNRS 2145, B.P. 46, 38042 Saint-Martin d'Hères, France
M. Suery
Affiliation:
Génie Physique et Mécanique des Matériaux (GPM2), Institut National Polytechnique de Grenoble (INPG), UMR CNRS 5010, FR CNRS 2145, B.P. 46, 38042 Saint-Martin d'Hères, France
J.M. Pelletier
Affiliation:
GEMPPM, INSA Lyon, UMR CNRS 5510, FR CNRS 2145, Bat. B. Pascal, 69621 Villeurbanne, France
Get access

Abstract

The high temperature deformation of the Zr41.2Ti12.5Cu13.8Ni10Be22.5 bulk metallic glass (BMG) is studied in the supercooled liquid region. Both fully amorphous and partially crystallized states are investigated. In the studied experimental domain, the amorphous alloy exhibits a Newtonian behavior at high temperature and/or low strain rate whereas a transition to non-Newtonian behavior is observed when the temperature is decreased and/or the strain rate is increased. In the Newtonian domain, the dependency of the viscosity upon temperature can be described by an Arrhénius law. As far as the as-received alloy is maintained at high temperature for which phase separation and primary crystallisation is expected, the flow stress continuously increases, which is at least partly attributed to a change in the residual amorphous phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Taub, A.I., Luborsky, F.E., Acta Metall., 29, (1981) 1939.Google Scholar
2. Kato, H., Kawamura, Y., Inoue, A., Appl. Phys. Lett., 73 (1998) 3665.Google Scholar
3. Kawamura, Y., Inoue, A., Appl. Phys. Lett., 77 (2000) 114.Google Scholar
4. Reger-Leonhard, A., Heilmaier, M. and Eckert, J., Scrip. Mater. 43 (2000) 49 Google Scholar
5. Heilmaier, M. J. Mater. Proc. Tech. 117 (2001) 374 Google Scholar
6. Nieh, T. G., Wadsworth, J., Liu, C. T., Ohkubo, T., Hirotsu, Y., Acta mater. 49 (2001) 2887.Google Scholar
7. Peker, A., Johnson, W.L., Appl. Phys. Lett. 63 (1993) 2324.Google Scholar
8. Waniuk, T. A., Busch, R., Masuhr, A. and Johson, W. L., Acta Mater. 15 (1998) 5229 Google Scholar