Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T02:27:32.254Z Has data issue: false hasContentIssue false

Helium Interaction with Y2Ti2O7: A First Principles Study

Published online by Cambridge University Press:  15 April 2014

Thomas Danielson
Affiliation:
Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA 24060, U.S.A.
Celine Hin
Affiliation:
Virginia Polytechnic Institute and State University, Department of Materials Science and Engineering, Blacksburg, VA 24060, U.S.A. Virginia Polytechnic Institute and State University, Department of Mechanical Engineering, Blacksburg, VA 24060, U.S.A.
Get access

Abstract

Helium embrittlement poses a great threat to materials used in both fusion and fissionreactor systems due to (n,α) transmutation reactions. Because of this, materials capable of moderating the helium content reaching grain boundaries and voids must be developed and improved to prevent catastrophic failure of reactor materials. Nanostructured ferritic alloys (NFAs) have shown great promise in preventing helium embrittlement due to the large number density of nanoscale precipitates acting as trapping sites for helium clusters and helium bubbles. In this study, we present density functional theory calculations on the interaction of helium with nanoscale precipitates found in NFAs as a preliminary study to furthering our understanding of the energetic mechanisms causing the precipitates to act as trapping sites for helium.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Odette, G.R., Alinger, M.J. and Wirth, B.D., Annu. Rev. Mater. Res. 38, 471 (2008).CrossRefGoogle Scholar
Fu, C.C. and Willaime, F., Phys. Rev. B 72, 064117 (2005).CrossRefGoogle Scholar
Yamamoto, T., Odette, G.R., Kurtz, R.J. and Wirth, B.D., Fusion Reactor Materials Program DOE/ER-0313/49, 73 (2010).Google Scholar
Edmondson, P.D., Parish, C.M., Zhang, Y., Hallen, A. and Miller, M.K., J. Nucl. Mater. 434, 210 (2013).CrossRefGoogle Scholar
Edmondson, P.D., Parish, C.M., Zhang, Y., Hallen, A. and Miller, M.K., Scripta Mat. 65, 731 (2011).CrossRefGoogle Scholar
Odette, G.R., Miao, P., Edwards, D.J., Yamamoto, T., Kurtz, R.J. and Tanigawa, H., J. Nucl. Mater. 417, 1001 (2011).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Comput. Mat. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169, (1996).CrossRefGoogle Scholar
van Mourik, T. and van Lenthe, J.H., J. Chem. Phys. 102, 7479 (1995).CrossRefGoogle Scholar
Ceperley, D.M. and Partridge, H., J. Chem. Phys. 84, 821 (1986).CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
Terki, R., Bertrand, G., Aourag, H. and Coddet, C., Physica B 392, 341 (2007).CrossRefGoogle Scholar
Jiang, Y., Smith, J.R. and Odette, G.R., Acta Mat. 58, 1536 (2010).CrossRefGoogle Scholar
Edmondson, P.D., Parish, C.M., Li, Q. and Miller, M.K., J. Nucl. Mater. Accepted Manuscript (12 October 2013).Google Scholar