Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:23:31.148Z Has data issue: false hasContentIssue false

Guided growth of in-plane lateral SiNWs led by indium catalysts

Published online by Cambridge University Press:  31 January 2011

Linwei Yu
Affiliation:
[email protected], LPICM, Ecole Polytechnique/CNRS, LPICM, 91128 PALAISEAU CEDEX, Paris, Palaiseau, 91128, France, 0613072496
Oumkelthoum Moustapha
Affiliation:
[email protected], LPICM, Ecole Polytechnique/CNRS, PALAISEAU, France
Maher Oudwan
Affiliation:
[email protected], LPICM, Ecole Polytechnique/CNRS, PALAISEAU, France
Pere Roca i Cabarrocas
Affiliation:
[email protected], LPICM, Ecole Polytechnique/CNRS, PALAISEAU, France
Get access

Abstract

Here we report a new in-plane solid-liquid-solid (IPSLS) mode for obtaining in-plane silicon nanowires (SiNW), which can be controlled and directly guided into various desired patterns for circuit architecture. Indium catalyst drops are firstly formed by a H2 plasma reduction of a thin layer of ITO on Corning glass substrate and then covered by an a-Si:H layer deposited at low temperature (100oC-200oC). The growth of SiNWs is activated in a reacting-gas-free thermal annealing process and led by the indium catalyst drops, that absorb and transform the a-Si:H matrix into crystalline SiNWs behind. At least two guided modes, that is, the a-Si:H channel guided mode and the step edge guided mode, can be applied to effectively control the growth routes for the lateral SiNWs. This guided growth of the IPSLS SiNWs lays an important basis for realizing various SiNWs-based device applications directly on top of low-cost substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wagner, R. S. Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.Google Scholar
[2] Cui, Y. Zhong, Z. Wang, D. Wang, W. U. Lieber, C. M. Nano Lett. 2003, 3, 149.Google Scholar
[3] Cui, Y. Wei, Q. Q. Park, H. K. Lieber, C. M. Science 2001, 293, 1289.Google Scholar
[4] Shan, Y. Kalkan, A. K. Peng, C.Y. Fonash, S. J. Nano Letters 2004, 4, 2085.Google Scholar
[5] Shan, Y. Fonash, S. J. ACS Nano 2008, 2, 429.Google Scholar
[6] Quitoriano, N. J. Kamins, T. I. Nano Letters 2008, 8, 4410.Google Scholar
[7] Hertog, M. I. d. Rouviere, J. L. Dhalluin, F. Gentile, P. Ferret, P. Ternon, C. Baron, T. in Microscopy of Semiconducting Materials 2007, 2008, 217.Google Scholar
[8] Dayen, J. F. Rumyantseva, A. Ciornei, C. Wade, T. L. Wegrowe, J. E. Pribat, D. Cojocaru, C. S. Appl. Phys. Lett. 2007, 90, 173110.Google Scholar
[9] Yu, L. Alet, P.J. Picardi, G. Cabarrocas, P. Rocai, Phys. Rev. Lett. 2009, 102, 125501.Google Scholar
[10] Roorda, S. Doorn, S. Sinke, W. C. Scholte, P. M. L. O. Loenen, E. van, Phys. Rev. Lett. 1989, 62, 1880.Google Scholar
[11] Hull, A. W. Physical Review 1921, 17, 571.Google Scholar
[12] Kodambaka, S. Tersoff, J. Reuter, M. C. Ross, F. M. Phys. Rev. Lett. 2006, 96, 096105.Google Scholar
[13] Davis, W. R. Wilson, J. Mick, S. Xu, J. Hua, H. Mineo, C. Sule, A. M. Steer, M. Franzon, P. D. Design & Test of Computers, IEEE 2005, 22, 498.Google Scholar