Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:15:17.404Z Has data issue: false hasContentIssue false

Growth and Purity of Epitaxial Compounds

Published online by Cambridge University Press:  15 February 2011

C. P. Flynn
Affiliation:
Physics Department and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin, Urbana, IL. 61801
M.-H. Yang
Affiliation:
Physics Department and Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 S. Goodwin, Urbana, IL. 61801
Get access

Abstract

We report experience in our laboratory with the growth of epitaxial compounds using molecular beam epitaxy. These include the L12 structures, Laves phases, perovskite, bixbyite and spinels, with complicated structures and up to 80 atoms per cell. In many cases the growth takes place with surprising ease, even though the complexity of the process verges on self assembly. The paper describes diffusion measurements in epitaxial MgO directed towards the determination of impurity content and the level of structural defects. The synthesis of ‘ultrapure’ epitaxial MgO, and the resulting properties is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Piercy, P., J. Mater. Res. 5, 852 (1990).Google Scholar
2. see e.g. Common Themes and Mechanisms of Epitaxial Growth, edited by Fuoss, P. (Mat. Res. Soc., Pittsburgh, PA, 1993).Google Scholar
3. Huang, J. C., Du, R.-R. and Flynn, C. P., Phys. Rev. Lett., 66, 341 (1991).Google Scholar
4. Durbin, S. M., Cunningham, J. E., Mochel, M. E. and Flynn, C. P., I. Phys. F11, 221 (1981); F-12, 75 (1982).Google Scholar
5. Cunningham, J. E. and Flynn, C. P., J. Phys. F15, L223 (1985).Google Scholar
6. Zhu, X., Feldhans'l, R., Zabel, H., Als-Neilsen, J., Du, R., Flynn, C. P. and Grey, F., Phys. Rev. 37, 7157 (1988).Google Scholar
7. Bando, Y., Horii, S. and Takada, T., Jap. I. Appl. Phys., 17, 1037 (1978); T. Shigematsu, H. Ushigomi, Y. Bando and T. Takada, J. Crystal Growth, 50, 801 (1980).Google Scholar
8. Yang, M.-H., and Flynn, C. P., Phys. Rev. Lett., 62, 2476 (1989).Google Scholar
9. Yang, M.-H. and Flynn, C. P., Phys. Rev. B41, 7961 (1990).Google Scholar
10. Yadavalli, S., Yang, M.-H. and Flynn, C. P., Phys. Rev. B41, 7961 (1990).Google Scholar
11. Flynn, C. P. and Yadavalli, S., Acta Metal Mater. 40, 545 (1992).Google Scholar
12. Li, D. X., Pirouz, P., Heuer, A. H., Yadavalli, S. and Flynn, C. P., Phil Mag A65, 403. (1992).Google Scholar
13. McKee, R. A., Walker, F. J., Specht, E. D., Boatner, L. A. and Jellison, G. E., Phys. Rev. Lett. 72, 2741 (1994).Google Scholar
14. see e.g. Flynn, C. P., Point Defects and Diffusion, Oxford, UP (1972).Google Scholar
15. Mackrodt, W. C., J. Mol. Liquids 39, 121 (1988); A. B. Lidiard and M. Norgett, in Computational Solid State Physics, edited by. F. Herman, N. W. Dalton and T. R. Koehler, (Plenum, NY, 1972).Google Scholar
16. Wuench, B. J., in Mass Transport in Solids, edited by Benier, F. and Catlow, C. R. A. (Plenum, NY, 1983); J. M. Vieira and R. J. Brook, in Structure and Properties of MgO and AI2Q3 Ceramics, edited by W. D. Kingery (Am. Cer. Soc., Columbus, OH, 1984).Google Scholar
17. Yang, M.-H. and Flynn, C. P., Phys. Rev. Lett. 73, 1809 (1994).Google Scholar
18. Revel, G., Pastol, J. L., Rouchaud, J. C. and Fromageau, R., Metalurg. Trans. 9B, 665 (1978).Google Scholar