Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:46:53.992Z Has data issue: false hasContentIssue false

Gold’s Structural Versatility within Complex Intermetallics: From Hume-Rothery to Zintl and even Quasicrystals

Published online by Cambridge University Press:  29 January 2013

Gordon J. Miller
Affiliation:
Department of Chemistry, Iowa State University Ames Laboratory, US Department of Energy, Ames, IA 50011
Srinivasa Thimmaiah
Affiliation:
Ames Laboratory, US Department of Energy, Ames, IA 50011
Volodymyr Smetana
Affiliation:
Ames Laboratory, US Department of Energy, Ames, IA 50011
Andriy Palasyuk
Affiliation:
Department of Chemistry, Iowa State University
Qisheng Lin
Affiliation:
Ames Laboratory, US Department of Energy, Ames, IA 50011
Get access

Abstract

Recent exploratory syntheses of polar intermetallic compounds containing gold have established gold’s tremendous ability to stabilize new phases with diverse and fascinating structural motifs. In particular, Au-rich polar intermetallics contain Au atoms condensed into tetrahedra and diamond-like three-dimensional frameworks. In Au-poor intermetallics, on the other hand, Au atoms tend to segregate, which maximizes the number of Au-heteroatom contacts. Lastly, among polar intermetallics with intermediate Au content, complex networks of icosahedra have emerged, including discovery of the first sodium-containing, Bergman-type, icosahedral quasicrystal. Gold’s behavior in this metal-rich chemistry arises from its various atomic properties, which influence the chemical bonding features of gold with its environment in intermetallic compounds. Thus, the structural versatility of gold and the accessibility of various Au fragments within intermetallics are opening new insights toward elucidating relationships among metal-rich clusters and bulk solids.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pearson, R.G., Inorg. Chem. 27, 734 (1988).10.1021/ic00277a030CrossRefGoogle Scholar
Wang, L.-S., Phys. Chem. Chem. Phys. 12, 8694 (2010).10.1039/c003886eCrossRefGoogle Scholar
Desclaux, J.P., At. Data Nucl. Data Tables 12, 311 (1973).10.1016/0092-640X(73)90020-XCrossRefGoogle Scholar
Pyykkö, P., Chem. Rev. 88, 563 (1988).10.1021/cr00085a006CrossRefGoogle Scholar
Miller, G.J., Lee, C.-S., Choe, W. in Highlights in Inorganic Chemistry, Eds. Meyer, G., Naumann, D., Wesemann, L., Wiley-VCH, Weinheim, Germany (2002), pp. 2154.Google Scholar
Miller, G.J., Schmidt, M.W., You, T.-S., Wang, F., Struct. Bond. 139, 1 (2011).10.1007/430_2010_24CrossRefGoogle Scholar
Mizutani, U., Hume-Rothery Rules for Structurally Complex Alloy Phases, CRC Press, New York (2011).Google Scholar
Gourdon, O., Gout, D., Williams, D.J., Proffen, T., Hobbs, S., Miller, G.J., Inorg. Chem. 46, 251 (2007).10.1021/ic0616380CrossRefGoogle Scholar
Thimmaiah, S., Richter, K.W., Lee, S., Harbrecht, B., Solid State Sci. 5, 1309 (2003)10.1016/S1293-2558(03)00178-XCrossRefGoogle Scholar
Thimmaiah, S., Miller, G.J., Chem. Eur. J. 16, 5461 (2010).10.1002/chem.200903300CrossRefGoogle Scholar
Gourdon, O., Miller, G.J., Chem. Mater. 18, 1848 (2006).10.1021/cm0526415CrossRefGoogle Scholar
Schmidt, J. T., Lee, S., Fredrickson, D. C., Conrad, M., Sun, J., Harbrecht, B., Chem. Eur. J. 13, 1394 (2007)10.1002/chem.200600135CrossRefGoogle Scholar
Gourdon, O., Bud’ko, S. L., Williams, D., Miller, G. J. Inorg. Chem. 43, 3210 (2004).10.1021/ic035419fCrossRefGoogle Scholar
Thimmaiah, S., Miller, G.J., Inorg. Chem. (2012), submitted for publication.Google Scholar
Dronskowski, R., Blochl, P., J. Phys. Chem. 97, 8617 (1993).10.1021/j100135a014CrossRefGoogle Scholar
Miller, G. J. in Chemistry, Structure, and Bonding of Zintl Phases and Ions, Ed. Kauzlarich, S. M., VCH, New York (1996).Google Scholar
Villars, P., Calvert, L. D., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Amer. Soc. Metals: Metals Park, OH (1989).Google Scholar
Kim, S.-J., Miller, G.J., Corbett, J. D., Z. Anorg. Allg. Chem. 636, 67 (2010).10.1002/zaac.200900417CrossRefGoogle Scholar
Wang, F., Miller, G. J., Eur. J. Inorg. Chem. 3989 (2011).10.1002/ejic.201100312CrossRefGoogle Scholar
Li, B., Kim, S.-J., Miller, G. J., Corbett, J. D., Inorg. Chem. 48, 6573 (2009).10.1021/ic9004856CrossRefGoogle Scholar
Miller, G.J., Lee, C.-S., Choe, W., in Inorganic Chemistry Highlights, Eds. Meyer, G., Naumann, D., Wesemann, L., Wiley-VCH: New York (2002), p. 21.Google Scholar
Palasyuk, A., Miller, G. J., to be published.Google Scholar
Smetana, V., Corbett, J. D., Miller, G. J., Inorg. Chem. 51, 1695 (2012).10.1021/ic201999uCrossRefGoogle Scholar
Smetana, V., Miller, G. J., Corbett, J. D., Inorg. Chem. 51, 7711 (2012).10.1021/ic300740uCrossRefGoogle Scholar
Lin, Q., Smetana, V., Miller, G. J., Corbett, J. D., Inorg. Chem. 51, 8882 (2012).10.1021/ic300866qCrossRefGoogle Scholar
Smetana, V., Lin, Q., Pratt, D. K., Kreyssig, A., Ramazanoglu, M., Corbett, J. D., Goldman, A. I., Miller, G. J., Angew. Chem. Int. Ed. Engl. (2012), in press.Google Scholar
Smetana, V., Lin, Q., Corbett, J. D., Miller, G. J., to be published. Google Scholar