Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-06T13:27:46.774Z Has data issue: false hasContentIssue false

Giant Magnetoresistance Phenomenon in Laser Ablated La0.6y0.07ca0.33mnox Thin Films

Published online by Cambridge University Press:  15 February 2011

Dhananjay Kumar
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
R. Kalyanaraman
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
David K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6061
Get access

Abstract

Microstructural and magnetoresistance properties of La0.6Y0.07Ca0.33MnOx (Y-doped LCMO) thin films grown in-situ by pulsed laser ablation have been studied. Transmission election microscopy and x-ray diffraction measurements have shown that the Y-doped LCMO thin films grow epitaxially on (100) LaAl03 substrates and are cubic with a lattice parameter of 3.849 ?. The as-deposited films exhibited a metal-insulator transition at 130 K and a giant magnetoresistance (GMR) at 125 K with a MR ratio (dR/RH) of 1500% in the presence of a magnetic field of 6 Tesla. Such a colossal value of MR ratio for as-deposited Y-doped LCMO films is quite promising keeping in view the fact that these films were unannealed and not optimized. We ascribe this magnetoresistance to spin-dependent electron scattering coupled with the presence of intervening O2. ions across Mn3+ and Mn4+ with suppressed separation between Mn-O layers caused by smaller sized Y-dopant. The effect of annealing on the positive-shift of metal-insulator transition temperature and the improvement in GMR ratio has also been discussed. We also report a non-ohmic response in the Y-doped LCMO films which is observed only in the region of the resistance peak and lends support to a conduction mechanism in these materials based on spin-dependent scattering of electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., and Chen, L.H., Science 264,413 (1994).Google Scholar
2 Jin, S., McCormack, M., Tiefel, T.H., and Ramesh, R.,J. Appl. Phys. 76, 6929 (1994).Google Scholar
3 McCormack, M., Jin, S., Tiefel, T.H., Fleming, R.M., Phillips, Julia M. and Ramesh, R., Appl. Phys. Lett. 64, 3045 (1994).Google Scholar
4 Ju, H.L., Gopalakrishnan, J., Peng, J.L., Li, Qi, Xiong, G.C., Venkatesan, T., and Greene, R.L., Phys. Rev. B51, 6143 (1995).Google Scholar
5 Helmolt, R. von, Wecker, J., Samwer, K., Haupt, L., and Barner, K., J. Appl. Phys. 76, 6925 (1994).Google Scholar
6 Xiong, G.C., Li, Q., Ju, H.L., Mao, S.N., Senapati, L., Xi, X.X., Greene, R.L., and Venkatesan, T., Appl. Phys. Lett. 66, 1427 (1995).Google Scholar
7 Manoharan, S. S., Vasanthacharya, N.Y., Hegde, M.S., Satyalakshami, K.M., Prasad, V., and Subramanyan, S.V., J. Appl. Phys. 76, 3923 (1994).Google Scholar
8 Manoharan, S.S., Kumar, D., Hegde, M.S., Satyalakshmi, K.M., Prasad, V., and, Subramanyan, S.V., J. Solid State Chem. ( in press).Google Scholar
9 Jin, S., O'Bryan, H.M., Tiefel, T.H., McCormack, M., and Rhodes, W.W., Appl. Phys. Lett. 66, 382 (1995).Google Scholar
10 Helmolt, R. von, Wecker, J., Halzapfel, B., Schullz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
11 Chahara, Ken-ichi, Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).Google Scholar
12 Chen, L.H., Jin, S., Tiefel, T.H., and Ramesh, R.,Appl.Phys. Lett. 64, 1039 (1994).Google Scholar
13 Mills, A.J., Littlewood, P.B., and Shraiman, B.I., Phys. Rev. Lett. 74, 5144(1995).Google Scholar
14 Liu, J. Z., Chang, I.C., Irons, S., Klavins, P., Shelton, R., Song, K., and Wasserman, S.R., Appl. Phys. Lett. 66, 3218 (1995).Google Scholar
15 Zeng, X.T. and Wong, H.K., Appl. Phys. Lett. 66, 3371 (1995).Google Scholar
16 Levy, P. M., Science 256, 972 (1992).Google Scholar
17 Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Patroff, F., Eitenne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phy. Rev. Lett. 61, 2472 (1998).Google Scholar
18 Kim, Y. K., and Sanders, S.C., Appl. Phys. Lett. 66, 1009 (1995).Google Scholar
19 Parkin, S.S., Appl. Phys. Lett. 63, 1987 (1993).Google Scholar
20 Levy, P.M., Zhang, S., and Fert, A., Phys. Rev. Lett. 65, 1643 (1990).Google Scholar
21 Goodenough, J.B., Phys. Rev. 100, 564 (1955).Google Scholar
22 Gonker, G. H., and Santen, J.H. Van, Physica 15, 337 (1950).Google Scholar
23 Zener, C., Phys. Rev. 81, 440 (1951).Google Scholar
24 Smith, N., IEEE Trans. Mag. 30, 3822 (1994).Google Scholar
25 Cross, R. Willimas, Russek, S.E., Sanders, S.C., Parker, M.R., Barnard, J. A., and Hossain, S.A., IEEE Trans. Mag. 30, 3825 (1994).Google Scholar