Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:15:03.612Z Has data issue: false hasContentIssue false

Gas Phase and Particle Diagnostic of Hmdso Plasmas by Infrared Absorption Spectroscopy

Published online by Cambridge University Press:  10 February 2011

D. Magni
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
C.H. Deschenaux
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
C. Courteille
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
A. A. Howling
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
C.H. Hollenstein
Affiliation:
Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
P. Fayet
Affiliation:
Tetra Pak (Suisse) SA, Materials R–D Romont, Switzerland
Get access

Abstract

FTIR spectroscopy has been applied to a radio-frequency discharge in hexamethyldisiloxane (HMDSO) diluted with oxygen and helium, as typically used for industrial SiOx, deposition. By measuring the infrared absorption of the HMDSO molecule, the gas consumption during processing can be monitored, allowing process optimization. Additional information on various infrared active radicals formed within the plasma, such as CO, CO2 and aldehydes, helps to elucidate the plasma chemistry in HMDSO plasmas. Besides information on the formation of gaseous components in the plasma, infrared transmission spectra give at the same time important data on the nature of the particle contamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stoffels, W.W, Stoffels, E, Kroesen, G.M.W, Haverlag, M., J.H.W.G., den Boer, and de Hoog, F.J., Plasma Sources Sci. Technol. 3, p.320, (1994).Google Scholar
2. Hollenstein, Ch., Howling, A.A., Courteille, C., Magni, D., Odermatt, S. Scholz, Kroesen, G.M.W, J. Phys. D: Appl. Phys. 31, p.74, (1998).Google Scholar
3. Courteille, C.. Hollenstein, Ch., Dorier, J.-L., Gay, P., Schwarzenbach, W., Howling, A.A., Bertran, E., Viera, G., Martins, R., and Macarico, A., J. Appl. Phys. 80, p.2069, (1996).Google Scholar
4. , G., Socrates, Infrared Characterisitic Group Frequencies, John Wiley and Sons, Chichester, 1994, pp. 188 -194Google Scholar
5. Sansonnens, L., Howling, A.A., and Hollenstein, Ch., Plasma Sources Sci. and Technol. 7, p.114, (1998).Google Scholar
6. Wright, N., and Hunter, M.J., J. Am. Chem. Soc. 69, p.803, (1947).Google Scholar
7. Lamendola, R., d'Agostino, R., and Fracassi, F., Plasmas and Polymers, 2, p.147, (1997).Google Scholar
8. Bohren, C., Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 1983, pp. 287–234.Google Scholar
9. Hulst, H.C van, Light Scattering by Small Particles, Dover Publications, Inc. New-York, 1981, pp.63234.Google Scholar
10. Hu, S.M., J.Appl.Phys. 51, p.5945, (1980).Google Scholar
11. Sarnthein, J., Pasquarello, A., and Car, R.. Science. 275, p.1925, (1997).Google Scholar