Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Yankov, R. A.
Voelskow, M.
Kreissig, W.
Kulikov, D. V.
Pezoldt, J.
Skorupa, W.
Trushin, Yu. V.
Kharlamov, V. S.
and
Tsigankov, D. N.
1997.
High-temperature high-dose implantation of N+ and Al+ ions in 6H-SiC.
Technical Physics Letters,
Vol. 23,
Issue. 8,
p.
617.
Teichert, G.
Schleicher, L.
Knedlik, Ch.
Voelskov, M.
Skorupa, W.
Yankov, R.A.
and
Pezoldt, J.
1998.
Thermal Wave Analysis: A Tool for Non-Invasive Testing in Ion Beam Synthesis of Wide Band Gap Materials.
MRS Proceedings,
Vol. 540,
Issue. ,
Kulikov, D. V.
Trushin, Yu. V.
Yankov, R. A.
Pezoldt, J.
and
Skorupa, W.
1998.
Theoretical description of high-temperature implantation of silicon carbide with N+ and Al+ ions.
Technical Physics Letters,
Vol. 24,
Issue. 1,
p.
17.
Anwand, W
Brauer, G
Coleman, P.G
Yankov, R
and
Skorupa, W
1999.
Characterization of vacancy-type defects in Al+ and N+ co-implanted SiC by slow positron implantation spectroscopy.
Applied Surface Science,
Vol. 149,
Issue. 1-4,
p.
140.
Pezoldt, J.
Yankov, R.A.
Mücklich, A.
Fukarek, W.
Voelskow, M.
Reuther, H.
and
Skorupa, W.
1999.
A novel (SiC)1−x(AlN)x compound synthesized using ion beams.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,
Vol. 147,
Issue. 1-4,
p.
273.
Kulikov, D. V.
Trushin, Yu. V.
Rybin, P. V.
and
Kharlamov, V. S.
1999.
Physical model for the evolution of the defect system of silicon carbide with allowance for the internal elastic stress fields during implantation of Al+ and N+ and subsequent annealing.
Technical Physics,
Vol. 44,
Issue. 10,
p.
1168.
Rybin, P.V.
Kulikov, D.V.
Trushin, Yu.V.
Yankov, R.A.
Ecke, G.
Fukarek, W.
Skorupa, W.
and
Pezoldt, J.
1999.
Modelling high-temperature co-implantation of N+ and Al+ ions in silicon carbide: the effect of stress on the implant and damage distributions.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,
Vol. 147,
Issue. 1-4,
p.
279.
Pezoldt, J
Yankov, R.A
Werninghaus, T
Zahn, D.R.T
Fukarek, W
Teichert, G
Luebbe, M
and
Skorupa, W
1999.
Structural and compositional characterization of 6H–SiC implanted with N+ and Al+ ions using optical methods.
Diamond and Related Materials,
Vol. 8,
Issue. 2-5,
p.
346.
Pezoldt, J.
Rybin, P.V.
Kulikov, D.V.
Trushin, Yu.V.
Yankov, R.A.
Voelskow, M.
and
Kreissig, U.
2000.
The influence of the implantation sequence on the (SiC)1−x(AlN)x formation.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms,
Vol. 166-167,
Issue. ,
p.
758.
Anwand, W.
Brauer, G.
and
Skorupa, W.
2001.
Evolution of ion implantation-caused vacancy-type defects in 6H–SiC probed by slow positron implantation spectroscopy.
Applied Surface Science,
Vol. 184,
Issue. 1-4,
p.
247.
Anwand, W
Brauer, G
and
Skorupa, W
2002.
Vacancy-type defects in 6H–SiC caused by N+ and Al+ high fluence co-implantation.
Applied Surface Science,
Vol. 194,
Issue. 1-4,
p.
131.
Brauer, G.
Anwand, W.
Coleman, P.G.
and
Skorupa, W.
2005.
Slow positron implantation spectroscopy—a tool to characterize vacancy-type damage in ion-implanted 6H-SiC.
Vacuum,
Vol. 78,
Issue. 2-4,
p.
131.