Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:48:44.984Z Has data issue: false hasContentIssue false

First electrically injected QD-MCLED emitting at 1.3 μm, grown by metal organic chemical vapour deposition

Published online by Cambridge University Press:  01 February 2011

V. Tasco
Affiliation:
National Nanotechnology Laboratory-NNL of INFM, Via Arnesano 73100 Lecce
M.T. Todaro
Affiliation:
National Nanotechnology Laboratory-NNL of INFM, Via Arnesano 73100 Lecce
M. De Giorgi
Affiliation:
National Nanotechnology Laboratory-NNL of INFM, Via Arnesano 73100 Lecce
M. De Vittorio
Affiliation:
National Nanotechnology Laboratory-NNL of INFM, Via Arnesano 73100 Lecce
R. Cingolani
Affiliation:
National Nanotechnology Laboratory-NNL of INFM, Via Arnesano 73100 Lecce
A. Passaseo
Affiliation:
National Nanotechnology Laboratory-NNL of INFM, Via Arnesano 73100 Lecce
Get access

Abstract

We present the fabrication of a Quantum Dot Microcavity Light Emitting Diode (QD-MCLED) emitting at 1.3 μm at room temperature. The long wavelength emission is achieved by using for the first time InGaAs QDs directly grown on GaAs, by metal organic chemical vapour deposition. Electroluminescence bright emission, peaked at 1298 nm with a FWHM of 6.5 meV and a line shape independent on the applied bias is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Schubert, E. F., Wang, Y.-H., Cho, A. Y., Tu, L.-W., and Zydzik, G. J., Appl. Phys. Lett. 60, 921 (1991).Google Scholar
2 Hunt, N. E. J., Schubert, E. F., Kopf, R. F., Sivco, D. L., Cho, A. Y., and Zydzik, G. J., Appl. Phys. Lett. 63, 2600 (1993).Google Scholar
3 Pratt, A. R., Takamori, T., and Kamijoh, T., J. Appl. Phys., 87, 8243(2000).Google Scholar
4 Krestnikov, I. L., Maleev, N. A., Sakharov, A. V., Kovsh, A. R., Zhukov, A. E., Tsatsul'nikov, A. F., Ustinov, V. M., Alferov, Zh. I., Ledenstov, N. N., Bimberg, D. and Lott, J. A., Semicond. Sci. Technol. 16, 844848 (2001).Google Scholar
5 Chen, H., Zou, Z., Cao, C., and Deppe, D. G., Appl Phys. Lett. 80, 350 (2002)Google Scholar
6 Passaseo, A., Maruccio, G., De Vittorio, M., Rinaldi, R., and Cingolani, R., Lomascolo, M., Appl. Phys. Lett. 78, 10 (2001).Google Scholar
7 Fiore, A., Oesterle, U., Stanley, R.P., Houdré, R., Lelarge, F., Ilegems, M., Borri, P., Langbein, W., Birkedal, D., Hvam, J. M., Cantoni, M., and Bobard, F., Jour. Quant. Elec., vol. 37, No. 8 (2001).Google Scholar
8 Schubert, E. F., Hunt, N. E. J., Malik, R. J., Micovic, M., and Miller, D. L., J. Lightwave Technol. 14, 1721 (1996).Google Scholar
9 El-Emawy, A. A., Birudavolu, S., and Wong, P.S., Jiang, Y.B., Xu, H., Huang, S. and Huffaker, D.L., J. Appl. Phys. 93, 6 (2003).Google Scholar
10 Bissiri, M., Baldassarri, G., Von Högersthal, H. and Capizzi, M., Frigeri, P. and Franchi, S., Phys. Rev. B 64, 245337 (2001).Google Scholar
11 Passaseo, A., Tasco, V., De Giorgi, M., Todaro, M.T., De Vittorio, M. and Cingolani, R., Submitted to Appl. Phys. Lett., Ref. No. L03–2532.Google Scholar