Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:24:43.275Z Has data issue: false hasContentIssue false

Evolution of Morphology During Etching of Si

Published online by Cambridge University Press:  10 February 2011

Ellen D. Williams
Affiliation:
Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742–4111, U.S.A.
Elain S. Fu
Affiliation:
Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742–4111, U.S.A.
Bin Li
Affiliation:
Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742–4111, U.S.A.
Get access

Abstract

The step morphology of clean Si surfaces has been studied under conditions of thermal etching in the temperature range 950 – 1250°C. Kinetic-bunching of steps is caused by direct current in the step-down direction around 950°C. By comparing the rate of thermal decay of these structures with and without direct current, the electromigration force causing this step bunching is estimated to be due to an effective charge of less than or approximately 0.01 electron units. Around 1150°C, step-bunching is caused by direct current in the step-up direction. By analysis of the patterns of step structure, the effective charge of the driving force is found to be approximately -0.1 electron units. Oxygen-induced etching of Si(001) and Si(111) has been studied in the temperature range of 700 – 900 °C, and at a pressure of 5 × 10−7 torr, conditions under which the surface is etched by the desorption of SiO. On Si(001), the original narrow distribution of double-layer height steps is preserved during the oxygen-etching process. On Si(111), the original narrow distribution of mixed single- and triple-layer height steps changes dramatically during oxygen-etching, leaving wide terraces of flat (111) surface separated by regions of high step density. At low etching temperatures (700°C), the steps remain straight within the step bunches and retain their distinct character as single- and triple-height steps. However, following higher temperature etching, the steps begin to merge into facets in the vicinity of defect structures. Following etching at the highest temperatures studied (815 and 830°C), the pinning action of the defect structures becomes apparent, and the pinned step-bunches become identifiable as (113) facets.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burton, W. K., Cabrera, N. and Frank, F. C., Phil. Trans. Roy. Soc. (London) 243A, 299 (1951).Google Scholar
2. Venables, J. A., Surf. Sci. 299/300, 798 (1994).Google Scholar
3. Frank, F. C., in Growth and Perfection of Crystals, Doremus, R. H., et al., Eds. (John Wiley and Sons, New York, 1958).Google Scholar
4. Kandel, D. and Weeks, J. D., Phys. Rev. B49, 5554 (1994).Google Scholar
5. Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
6. Stoyanov, S., Jpn. J. Appl. Phys. 30, 1 (1991).Google Scholar
7. Stoyanov, S. S., Ichikawa, M. and Doi, T., Jpn. J. Appl. Phys., Pt. 1 32, 2047 (1993).Google Scholar
8. Latyshev, A. V., Aseev, A. L., Krasilnikov, A. B., Stenin, S. I., Surf. Sci. 213, 157 (1989).Google Scholar
9. Alfonso, C., Heyraud, J. C. and Métois, J. J., Surf. Sci. 291, L745 (1993).Google Scholar
10. Phaneuf, R. J., Williams, E. D. and Bartelt, N. C., Phys. Rev. B38, 1984 (1988).Google Scholar
11. Phaneuf, R. J. and Williams, E. D., Phys. Rev. Lett. 58, 2563 (1987).Google Scholar
12. Phaneuf, R. J. and Williams, E. D., Phys. Rev. B 41, 2991 (1990).Google Scholar
13. Latyshev, A. V., et al., Phys. Stat. Sol. A113, 421 (1989).Google Scholar
14. Homma, Y., McClelland, R. and Hibino, H., Jpn. J. Applied Physics 29, 2254 (1990).Google Scholar
15. Yang, Y.-N., Fu, E. S. and Williams, E. D., Surf. Sci. 356, 101 (1996).Google Scholar
16. Smith, F. W. and Ghidini, G., J. Electrochemi. Soc 129, 1300(1982).Google Scholar
17. Engel, T., Surf. Sci. Rep. 18, 91 (1993).Google Scholar
18. Donig, F., et al., J. Vacuum Sci. Technol. B11, 1955 (1993).Google Scholar
19. Seiple, J. V. and Pelz, J. P., J. Vac. Sci. Technol. A 13(3), 772 (1995).Google Scholar
20. Alien, F. G., J. Appl. Phys. 28, 1510 (1957).Google Scholar
21. Phaneuf, R. J. and Williams, E. D., Surf. Sci. 195, 330(1988).Google Scholar
22. Kaplan, R., Surf. Sci. 93, 145 (1980).Google Scholar
23. Wei, J., er al., Phys. Rev. Lett. 69, 3885 (1992).Google Scholar
24. Alfonso, C., Bermond, J. M., Heyraud, J. C. and Metois, J. J., Surf. Sci. 262, 371 (1992).Google Scholar
25. Liu, D.-J., Fu, E. S., Johnson, M. D., Weeks, J. D. and Williams, E. D., J. Vacuum Sci. Technol. B14, 2799 (1996).Google Scholar
26. Fu, E., et al., Phys. Rev. Lett. 77, 1095 (1996).Google Scholar
27. Fu, E. S., Liu, D.-J., Johnson, M. D., Weeks, J. D. and Williams, E. D., submitted (1996).Google Scholar
28. Williams, E. D., Fu, E., Yang, Y.-N., Kandel, D., Weeks, J. D., Surf. Sci. 336, L746 (1995).Google Scholar
29. Kandel, D. and Weeks, J. D., Phys. Rev. Lett. 74, 3632 (1995).Google Scholar
30. Bartelt, N. C., et al., Phys. Rev. B48, 15453 (1993).Google Scholar
31. Yang, Y.-N., et al., Phys. Rev. Lett. 64, 2410 (1990).Google Scholar
32. Yang, Y.-N. and Williams, E. D., J. Vacuum Sci. Technol. A8, 2481 (1990).Google Scholar
33. Goldberg, J. L., et al., J. Vacuum Sci. Technol. A9, 1868 (1991).Google Scholar
34. Wei, J., Wang, X.-S., Bartelt, N. C., Williams, E. D. and Tung, R. T., J. Chem. Phys. 94, 8384(1991).Google Scholar
35. Ozcomert, J. S., Pai, W. W., Bartelt, N. C., Reutt-Robey, J. E., Surf. Sci. 293, 183 (1993).Google Scholar
36. Mundschau, M., Bauer, E., Telieps, W. and Swiech, W., Phil. Mag. A61, 257 (1990).Google Scholar
37. Kandel, D. and Kaxiras, E., Phys. Rev. Lett. 76, 1114 (1996).Google Scholar