Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:52:48.588Z Has data issue: false hasContentIssue false

Erbium-Doped Silicon Prepared by UHV/CVD

Published online by Cambridge University Press:  22 February 2011

David B. Beach
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Reuben T. Collins
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Francoise K. Legoues
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Jack O. Chu
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598
Get access

Abstract

Erbium-doped silicon has been prepared using Ultra High Vacuum/Chemical Vapor Deposition (UHV/CVD). An erbium mctalorganic compound, tris-1,1,1,5,5,5-hexafluoro-2,4-pentanedionato erbium (111) (Er(HFAC)3), was used as the erbium source and silane was used as the silicon source. Films were deposited at 650 °C at a total pressure of 1 mtorr. Erbium concentrations between 8×1019 and 1×1018 Er atoms/cm3 were prepared by varying the Er source reservoir temperature. Low temperature photoluminescence measurements showed strong emission at 1.54μm. The films are single crystal, but with a high concentration of threading defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schmulovich, J., Wong, A., Wong, Y. H., Becker, P. C., Bruce, A. J., and Adar, R., Electron. Lett. 28, 1181 (1992).Google Scholar
2. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).Google Scholar
3. Benton, J. L., Michel, J., Kimerling, L. C., Jacobsen, D. C., Xie, Y.-H., Eaglesham, D. J., Fitzgerald, E. A. and Poate, J. M., J. Appl. Phys. 70, 2667 (1991).Google Scholar
4. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 381 (1985).Google Scholar
5. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., Fitzgerald, E. A., Xie, Y.H., Poate, J. M., and Kimerling, L. C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
6. Eaglesham, D. J., Michel, J., Fitzgerald, E. A., Jacobsen, D. C., Poate, J. M., Benton, J. L., Polman, A., Xie, Y.-H., and Kimerling, L. C., Appl. Phys. Lett. 58, 2797 (1991).Google Scholar
7. Xie, Y. H., Fitzgerald, E. A., and Mii, Y. J., J. Appl. Phys. 70, 3223 (1991).Google Scholar
8. Meyerson, B. S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
9. Meyerson, B. S., LcGoues, F. K., Nguyen, T. N., and Harame, D. L., Appl. Phys. Lett. 50, 113 (1987).Google Scholar
10. Uwai, K., Nakagome, H., and Takahei, K., J. Crystal Growth 93, 583 (1988).Google Scholar
11. Weber, J., Moser, M., Stapor, A., Scholz, F., Bohnert, G., Hangleiter, A., Hammel, A., Wiedmann, D., and Weidlein, J., J. Crystal Growth 104, 815 (1990).Google Scholar
12. Weber, A., Suhr, H., Schumann, H., and Kohn, R. D., Appl. Phys. A 51, 520 (1990).Google Scholar
13. Takemoto, J. H., Jackson, C. M., Manasevit, H. M., John, D. C. St., Burch, J. F., Daly, K. P., and Simon, R. W., Appl. Phys. Lett. 58, 1109 (1991).Google Scholar
14. Cowher, M. E., and Sedgwick, T. O., J. Crystal Growth 46, 399 (1979).Google Scholar
15. Berg, E. W. and Acosta, J. J., Anal. Chim. Acta 40, 101 (1968).Google Scholar
16. Morris, M. L., Mosher, R. W., and Sievers, R. E., in Inorganic Syntheses, Vol. IX (McGraw Hill, NY, 1967), p. 28.Google Scholar