Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T03:53:49.836Z Has data issue: false hasContentIssue false

Epitaxial Niobate Thin Films and Their Nonlinear Optical Properties

Published online by Cambridge University Press:  15 February 2011

B. W. Wessels
Affiliation:
Department of Materials Science and Engineering, and the Materials Research Center
M. J. Nystrom
Affiliation:
Department of Materials Science and Engineering, and the Materials Research Center
J. Chen
Affiliation:
Department of Chemistry, and the Materials Research Center Northwestern University, Evanston, IL 60208
D. Studebaker
Affiliation:
Department of Chemistry, and the Materials Research Center Northwestern University, Evanston, IL 60208
T. J. Marks
Affiliation:
Department of Chemistry, and the Materials Research Center Northwestern University, Evanston, IL 60208
Get access

Abstract

Ferroelectric oxide thin films show considerable potential as electro-optic and non-linear optical materials. Of particular interest are the niobates such as strontium barium niobate and potassium niobate. The growth of these epitaxial oxide films by metal-organic chemical vapor deposition (MOCVD) has been investigated. This technique has yielded epitaxial thin films with excellent non-linear optical properties. Issues concerning the epitaxy of these thin films and its relationship to their optical and nonlinear optical properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mitomi, O., Noguchi, K., and Miyazawa, H., 8th Annual Lasers and Electro Optics Meeting (LEOS), San Francisco, (1995).Google Scholar
2 Gilbert, S. R., Wessels, B. W., Neumayer, D. A., Marks, T. J., Schindler, J. L, and Kannewurf, C. R., Mat. Res. Soc. Symp., 335, 41 (1994).Google Scholar
3 Nystrom, M. J., Wessels, B. W., Lin, W. P., Wong, G. K., Neumayer, D. A., and Marks, T. J., Appl. Phys. Lett., 66, 1726 (1995).Google Scholar
4 Nystrom, M. J., Wessels, B. W., Studebaker, D. B., Marks, T. J., Lin, W. P., and Wong, G. K.,Appl. Phys. Lett., 67, 365 (1995).Google Scholar
5 Nystrom, M. J., Wessels, B. W., Chen, J., Studebaker, D. B., Marks, T. J., Lin, W. P., and Wong, G. K., Mat. Res. Soc. Symp., 392, 183 (1995).Google Scholar
6 Glass, A. M. and Strait, J., Photorefractive Materials and Their Applications I, edited by Gtinter, P. and Huignard, J.-P. (Springer-Verlag: Berlin, 1988) pp. 237262.Google Scholar
7 Wills, L. A., Wessels, B. W., Richeson, D. S., and Marks, T. J., Appl. Phys. Lett., 60, 41(1992).Google Scholar
8 Hiskes, R., Dicarolis, S. A., Fouquet, J., Lu, Z., Feigelson, R. S., Route, R. K., Leplingard, F., and Foster, C. M., Mat. Res. Soc. Symp. Proc. 335, (1993).Google Scholar
9 Fork, D. and Anderson, G. B., Mat. Res. Soc. Symp. Proc. 361, (1994).Google Scholar
10 Wessels, B. W., Proc. SPIE, 2397 (1995).Google Scholar
11 Tien, P. K., Appl. Optics, 10, 2395 (1971).Google Scholar
12 JCPDS, Powder Diffraction Files-Inorganic Phase ( Center for Diffraction Data, Swarthmore, PA 1994).Google Scholar
13 Lu, H. A., Wills, L. A., Wessels, B. W., Lin, W. P., Zhang, T. G., Wong, G. K., Neumayer, D. A., and Marks, T. J.. Appl. Phys. Lett. 62, 22 (1993).Google Scholar
14 Jeggo, C. R. and Boyd, G. D., J. Appl. Phys. 41, 2741 (1970).Google Scholar
15 Nystrom, M. J., Wessels, B. W., Chen, J., and Marks, T. J., Appl. Phys. Lett. (in press).Google Scholar