Published online by Cambridge University Press: 10 February 2011
Results about a new CVD system suited for epitaxial growth on six 2 inch SiC-wafers at a time are presented. Excellent gas flow stability is achieved for this new reactor type as shown by in- situ observations of the gas flow dynamics in the reactor chamber. These experimental results agree favorably with numerical process simulation results.
The epitaxial layers grown in the multi-wafer system so far show a by an order of magnitude higher background impurity level (≤1015 cm−3) as reported previously for layers grown in single-wafer systems by the authors and other groups (≤ 1014 cm−3). On the other hand, the doping homogeneity achieved until today is very encouraging. The variation on a 2 inch wafer is less than ± 20% at about 1*1016 cm−3. The wafer to wafer variation of the average doping value both within a run and from run to run is within 15 %. The reproducibility and uniformity of the layer thickness is even better (total thickness variation ≤5% on a 2 inch wafer). The surface of the epitaxial layers is very smooth with a typical growth step height of 0.5 nm (4H, 8° off orientation). First measurements on Schottky diodes build on these layers show low leakage current values indicating low point defect density in the epitaxial layers.