Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:25:19.004Z Has data issue: false hasContentIssue false

Electron Microscopy Studies of the High Temperature Oxidation Behavior of NiAl

Published online by Cambridge University Press:  10 February 2011

J. C. Yang
Affiliation:
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
E. Schumann
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, D-70174, GERMANY
I. Levin
Affiliation:
Department of Materials Engineering, Technion, Haifa, 32000, ISRAEL
H. Muellejans
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, D-70174, GERMANY
M. Ruhle
Affiliation:
Max-Planck-Institut für Metallforschung, Stuttgart, D-70174, GERMANY
Get access

Abstract

The transient oxidation stage of single crystal (001)NiAl was investigated using scanning electron microscopy, transmission electron microscopy, electron diffraction, high resolution electron microscopy and electron energy loss spectroscopy (EELS). (001)NiAl was oxidized in air at 950°C in order to produce transient forms of alumina on the surface. After oxidation, an oxide scale with plate-like surface morphology formed. We found that the main transient alumina polymorph is γ-Al2O3. The platelets which formed on the surface of the oxide are most likely α-A12O3, not θ-Al2O3. Randomly-oriented α-Al2O3 grains were observed at the oxide/metal interface. The NiAl/γ-Al2O3 interfaces were examined with EELS. From the changes observed in the electron energy loss spectra, the interfacial terminating plane is determined. Lattice matching arguments are given to explain why these terminating planes are energetically favorable.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, J. C., Schumann, E., Muellejans, H. and Ruhle, M., Journal of Physics D 29, p. 1716 (1996).Google Scholar
2. Yang, J. C., Schumann, E., Levin, I. and Ruhle, M., under revision for Acta Materialia.Google Scholar
3. Yang, J. C., Schumann, E., Levin, I. and Ruhle, M., Proc. 3rd Int. Conf. on Microscopy of Oxidation, in press (1996).Google Scholar
4. Prüβner, K., Bruley, J., Salzberger, U., Zweygart, H., Schumann, E. and Ruhle, M., Proc. 2nd Int. Conf. on Microscopy of Oxidation, p. 435 (1993).Google Scholar
5. Doychak, J., Smialek, J.L., and Mitchell, T.E., Met. Trans. A, 20 A, p. 499 (1989).Google Scholar
6. Jaeger, R. M., Kulenbeck, H., Freund, H. -J., Wurtig, M., Hoffmann, W., Franchy, R. and Ibach, H., Surface Science, 259, p. 235 (1991).Google Scholar
7. Gassmann, P., Franchy, R., and Iback, H., Surface Science, 319, p. 95 (1994).Google Scholar
8. Yang, J. C., Nadarzinski, K., Schumann, E. and Ruhle, M., Scripta Met., 33(7), p. 1043, (1995).Google Scholar
9. Smialek, J. L. and Gibala, R., Met. Trans. A, 14 A, p. 2143, (1983).Google Scholar
10. Strecker, A., Salzberger, U., and Mayer, J., Practical Metallography, 30, p. 482 (1993).Google Scholar
11. Müllejans, H.H. and Bruley, J., Journal of Microscopy, 180(1), p. 12 (1995).Google Scholar
12. Egerton, R.F., Electron Energy-Loss Spectroscopy in the Electron Microscope. Plenum Press, New York, 1986.Google Scholar
13. Leapmann, R., Granes, L. and Fejes, P., Phys. Rev. B, 26(1), p. 614 (1982).Google Scholar
14. Scheu, C. and Brydson, R., private communication.Google Scholar