Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T09:20:50.574Z Has data issue: false hasContentIssue false

Effects of mass, energy and temperature on amorphization in ion implanted Ge2Sb2Te5 thin films

Published online by Cambridge University Press:  01 February 2011

Riccardo De Bastiani
Affiliation:
[email protected], CNR-IMM and Dipartimento di fisica ed Astronomia, Dipartimento di fisica ed Astronomia, Via S. Sofia 64, Catania, 95123, Italy, +390963785352
Alberto Maria Piro
Affiliation:
[email protected], MATIS CNR-INFM, Dipartimento di Fisica ed Astronomia, Universitá di Catania, 64 via S.Sofia, Catania, 95123, Italy
Salvatore Lombardo
Affiliation:
[email protected], IMM-CNR, Catania, Italy
Maria Grazia Grimaldi
Affiliation:
[email protected], MATIS CNR-INFM, Dipartimento di Fisica ed Astronomia, Universitá di Catania, 64 via S.Sofia, Catania, 95123, Italy
Emanuele Rimini
Affiliation:
[email protected], IMM-CNR, Catania, Italy
Get access

Abstract

The paper reports on the amorphization kinetics of chalcogenides ternary alloy induced by Ar or Sb ion irradiation. The reflectivity data, obtained “in situ” during irradiation, allow a description of the amorphization process in terms of a threshold fluence. The results demonstrate that amorphization is caused by the elastic collisions of the projectiles with target nuclei. The influence of the ion mass and energy, of the target temperature in the amorphization is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P., Wutti, M., J. Appl. Phys 87, (2000), 4130 Google Scholar
[2] Lee, Bong-Sub, Abelson, John R., Bishop, Stephen G., Kang, Dae-Hwan, Cheong, Byung-ki, Kim, Ki-Bum, J. Appl. Phys 97, (2005), 93509 Google Scholar
[3] Privitera, S., Buongiorno, C., Rimini, E., Zonca, R., J. Appl. Phys 84, (2004), 4448 Google Scholar
[4] Petrov, I. I., Imamov, R. M. and Pinsker, Z. G.: Sov. Phys. Cryst. 13 (1968) 339.Google Scholar
[5] Yamada, N. and Matsunaga, T., J. Appl. Phys. 88 (2000) 7020.Google Scholar
[6] Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y. and Hashimoto, H., Thin Solid Films 370 (2000) 258.Google Scholar
[7] Kolobov, A., Fons, P., Frenkel, A. I., Ankundinov, A. L., Tominaga, J., Uruga, T., Nature Materials, Vol 3, (2004), 703 Google Scholar
[8] Ziegler, J. F., Biresack, J. P., and Littmark, U., The Stopping and the Range of Ions in Solids Pergamon, New York, 1985 Google Scholar
[9] Mayer, M., AIP Conf. Proc. 475, (1999), 541 Google Scholar
[10] Gibbons, J. F., Proc. IEEE 60, (1972), 1062 Google Scholar