Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T08:16:22.420Z Has data issue: false hasContentIssue false

Effects of CF4, Reactive ion Etching on Si-Doped Al0.2Ga0.8As

Published online by Cambridge University Press:  10 February 2011

Akira Ito
Affiliation:
Department of Electronic and Information Engineering, Suzuka National College of Technology, Shiroko, Suzuka 510-0294, Japan, [email protected]
Atsuyoshi Sakai
Affiliation:
Department of Electronics, Aichi Institute of Technology, Yakusa, Toyota 470-0392, Japan
Yutaka Tokuda
Affiliation:
Department of Electronics, Aichi Institute of Technology, Yakusa, Toyota 470-0392, Japan
Get access

Abstract

Effects of CF4 reactive ion etching on electrical characteristics of Si-doped Al0.2Ga0.8As layers were studied with capacitance-voltage and deep level transient spectroscopy measurements. Plasma exposure for about 30 s drastically degrades the electrical characteristics. Post-annealing at 360 °C for 20 s partially recovers the carrier concentrations. After the post-annealing, some electron traps were observed. Two of the traps show bi-stability. The concentrations of the two traps increase with forward bias temperature annealing and decrease with reverse bias temperature annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wada, K., Nakanishi, H. and Kimerling, L. C., Materials Science Forum Vols. 196–201, 1401 (1995)Google Scholar
2. Mitani, K., Oda, H., Kasai, J. and Imamura, Y., Jpn.J.Appl.Phys. 34, 3970 (1995)Google Scholar
3. Wada, J., Matsukura, Y., Ogihara, T. and Ueda, O., J.Appl.Phys. 82, 617(1997)Google Scholar
4. Lang, D. V., J.Appl.Phys. 45, 3023 (1974)Google Scholar
5. Tokuda, Y., Shimizu, N. and Usami, A., J.Appl.Phys. 18, 309 (1979)Google Scholar
6. Shiraki, H., Tokuda, Y., Sassa, K., J.Appl.Phys 84, 3167 (1998)Google Scholar
7. Mooney, P. M., J.Appl.Phys. 67, RI(1990)Google Scholar
8. Nabity, J. C., Stavola, M., Lopata, J., Dautremont-Smith, W. C., Tu, C. W. and Pearton, S. J., Appl.Phys.Lett. 50, 921 (1987)Google Scholar
9. Narituska, S., Yamanaka, K., Mihara, M., and Ishis, M., Jpn.J.Appl.Phys. 23, L112 (1984)Google Scholar
10. Naritsuka, S., Yamanaka, K., Mannoh, M., Mihara, M. and Ishi, M., Jpn.J.Appl.Phys. 24, 1324 (1985)Google Scholar
11. Dhar, S., Hong, W. P., Bhattachraya, P. K., Nashimoto, Y. and Juang, F. Y., IEEE Transactions on Electron Devices ED-33, 698 (1986)Google Scholar
12. Huang, Y. J. and Ioannou, D. E., Mat.Res.Soc.Symp.Proc. 82, 145 (1987)Google Scholar