Published online by Cambridge University Press: 10 February 2011
With the advent of copper metallization in interconnect structures, new barrier layers are required to prevent copper diffusion into the adjacent dielectrics as well as the underlying silicon. These barriers must not only prevent interdiffusion but also provide adequate adhesion to both the dielectric and copper. Ta and TaN have received considerable attention as barrier layers in copper metallization schemes. While much has been reported on their diffusion properties, little or no quantitative data exists on their adhesive properties. We present data on both the interface fracture energy and the subcritical debonding of ionmetal- plasma sputtered Ta and TaN films on thermal silicon oxide. Data is also presented showing the significant effect of interfacial chemistry, particularly varying nitrogen contents at the TaN/SiO2 interface.