Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T20:07:57.040Z Has data issue: false hasContentIssue false

Dramatically Enhanced Thermoelectric Properties of Ca3Co4Oy by Large Amount of RE Substitution

Published online by Cambridge University Press:  01 February 2011

Y. Sugiura
Affiliation:
Department of Superconductivity, University of Tokyo, Tokyo 113–8656, Japan
S. Horii
Affiliation:
Department of Superconductivity, University of Tokyo, Tokyo 113–8656, Japan
T. Kumagai
Affiliation:
Department of Superconductivity, University of Tokyo, Tokyo 113–8656, Japan
T. Okamoto
Affiliation:
Department of Superconductivity, University of Tokyo, Tokyo 113–8656, Japan
K. Otzschi
Affiliation:
Department of Superconductivity, University of Tokyo, Tokyo 113–8656, Japan
J. Shimoyama
Affiliation:
Department of Superconductivity, University of Tokyo, Tokyo 113–8656, Japan PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332–0012, Japan
K. Kishio
Affiliation:
Department of Superconductivity, University of Tokyo, Tokyo 113–8656, Japan
Get access

Abstract

We report the synthesis and thermoelectric properties of [(Ca1-xREx)2CoO3-δ]0.62CoO2 compounds (RE: rare earth element, RE = Y, Sm, Eu, Tb, Dy, Ho and Lu). From optimization of synthesis conditions, all the chosen RE in this study were able to be substituted for the Ca sites in the block layers up to x = 0.25. In the case of RE = Tb, at 1150 K, only κ was systematically decreased with x, while both Seebeck coefficient (S) and resistivity (ρ) were almost constant for the charge of x. Consequently, the dimensionless figure of merit (ZT) was increased with x and reached 0.2 at 1150 K for x = 0.25. Moreover, interestingly, it was found that S and ρ at 300 K were enhanced with ionic radius of the doped trivalent RE ions in spite of the doping of equivalent RE ions. This is probably because local structures of oxygen sites around Co ion in the CoO2 layers largely depend on kinds of the doped RE.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Terasaki, I., Sasago, Y., and Uchinokura, K.: Phys. Rev. B 56 (1997) R12685.Google Scholar
2. Itoh, T. and Terasaki, I.: Jpn. J. Appl. Phys. 39 (2000) 6658.Google Scholar
3. Yamamoto, T., Tsukada, I., Uchinokura, K., Takagi, M., Tsubone, T., Ichihara, M. and Kobayashi, K.: Jpn. J. Appl. Phys. 39 (2000) 747.Google Scholar
4. Shin, W. and Murayama, N.: J. Mater. Res. 15 (2002) 382.Google Scholar
5. Masset, A.C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F. and Raveau, B.: Phys. Rev. B 62 (2000) 166.Google Scholar
6. Miyazaki, Y., Kudo, K., Akoshima, M., Ono, Y., Koike, Y. and Kajitani, T.: Jpn. J. Appl. Phys. 39 (2000) L531.Google Scholar
7. Miyazaki, Y., Onoda, M., Oku, T., Kikuchi, M., Ishii, Y., Morii, Y. and Kajitani, T.: J. Phys. Soc. Jpn. 71 (2002) 491.Google Scholar
8. Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U. and Sodeoka, S.: Jpn. J. Appl. Phys. 39 (2000) L1127.Google Scholar
9. Shimoyama, J., Horii, S., Otzschi, K., Sano, M., and Kishio, K.: Jpn. J. Appl. Phys. 42 (2003) L194.Google Scholar
10. Fujie, K., Horii, S., Matsubara, I., Shin, W., Murayama, N., Shimoyama, J. and Kishio, K.: Mat. Res. Soc. Symp. Proc. 793 (2004) 317.Google Scholar
11. Sano, M., Horii, S., Matsubara, I., Funahashi, R., Shikano, M., Shimoyama, J. and Kishio, K.: Jpn. J. Appl. Phys. 42 (2003) L198.Google Scholar
12. Horii, S., Matsubara, I., Sano, M., Fujie, K., Suzuki, M., Funahashi, R., Shikano, M., Shin, W., Murayama, N., Shimoyama, J. and Kishio, K.: Jpn. J. Appl. Phys. 42 (2003) 7018.Google Scholar
13. Zhou, Y., Matsubara, I., Horii, S., Takeuchi, T., Funahashi, R., Shikano, M., Shimoyama, J., Kishio, K., Shin, W., Izu, N. and Murayama, N.: J. Appl. Phys. 93 (2003) 2653.Google Scholar
14. Heikes, R. R. and Ure, R. W. Jr, Thermoelectricity: Science and Engineering (Interscience Publishers, New York, London, 1961).Google Scholar
15. Koshibae, W., Tsutsui, K. and Maekawa, S.: Phys. Rev. B 62 (2000) 6869.Google Scholar
16. Matsubara, I., Funahashi, R., Takeuchi, T., Shimizu, T., Sodeoka, S., Zhou, Y. and Ueno, K.: Research Signpost 81 (2002) 37.Google Scholar
17. Miyazaki, Y., Suzuki, Y., Onoda, M., Ishii, Y., Morii, Y. and Kajitani, T.: Jpn. J. Appl. Phys. 43 (2004) 6252.Google Scholar
18. Miyazaki, Y., Miura, T., Ono, Y. and Kajitani, T.: Journal of the Japan Society of Powder and Powder Metallurgy 50 (2003) 6. (in Japanese)Google Scholar