Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:44:01.011Z Has data issue: false hasContentIssue false

Doping of Aigan Alloys

Published online by Cambridge University Press:  10 February 2011

Chris G. Van de Walle
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
C. Stampfl
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14 195 Berlin-Dahlem, Germany
J. Neugebauer
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14 195 Berlin-Dahlem, Germany
M. D. McCluskey
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
N. M. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Nitride-based device structures for electronic and optoelectronic applications usually incorporate layers of AlxGal-xN, and n- and p-type doping of these alloys is typically required. Experimental results indicate that doping efficiencies in AlxGal-xN are lower than in GaN. We address the cause of these doping difficulties, based on results from first-principles density-functional-pseudopotential calculations. For n-type doping we will discuss doping with oxygen, the most common unintentional donor, and with silicon. For oxygen, a DX transition occurs which converts the shallow donor into a negatively charged deep level. We present experimental evidence that oxygen is a DX center in AlxGal-xN for x>∼0.3. For p-type doping, we find that compensation by nitrogen vacancies becomes increasingly important as the Al content is increased. We also find that the ionization energy of the Mg acceptor increases with alloy composition x. To address the limitations on p-type doping we have performed a comprehensive investigation of alternative acceptor impurities; none of the candidates exhibits characteristics that surpass those of Mg in all respects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Koide, Y., Itoh, H., Sawaki, N., Akasaki, I., and Hashimoto, M., J. Electrochem. Soc., 133, 1956 (1986).Google Scholar
2 Lee, H. G., Gershenzon, M., Goldenberg, B. L., J. Elec. Mat. 20, 621 (1991).Google Scholar
3 McCluskey, M. D., Johnson, N. M., Walle, C. G. Van de, Bour, D. P., Kneissl, M., and Walukiewicz, W., Phys. Rev. Lett. 80, 4008 (1998).Google Scholar
4 Bremser, M. D., Perry, W. G., Zheleva, T., Edwards, N. V., Nam, O. H., Parikh, N., Aspnes, D. E., and Davis, R. F., MRS Internet J. Nitride Semicond. Res. 1, 8 (1996).Google Scholar
5 Bremser, M. D., Perry, W. G., Edwards, N. V., Zheleva, T., Parikh, N., Aspnes, D. E., and Davis, R. F., Mat. Res. Soc. Symp. Proc. 395, 195 (1996).Google Scholar
6 Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. Lett. 75, 4452 (1995).Google Scholar
7 Neugebauer, J. and Walle, C. G. Van de, Appl. Phys. Lett. 68, 1829 (1996).Google Scholar
8 Tanaka, T., Watanabe, A., Amano, H., Kobayashi, Y., Akasaki, I., Yamazaki, S., and Koike, M., Appl. Phys. Lett. 65, 593 (1994).Google Scholar
9 Katsuragawa, M., Sota, S., Komori, M., Anbe, C., Takeuchi, T., Sakai, H., Amano, H., and Akasaki, I., J. Cryst. Growth 189/190, 528 (1998).Google Scholar
10 Suzuki, M., Nishio, J., Onomura, M., and Hongo, C., J. Cryst. Growth 189/190, 511 (1998).Google Scholar
11 Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. B 50, 8067 (1994).Google Scholar
12 Neugebauer, J. and Walle, C. G. Van de, in Proceedings of the 22nd International Conference on the Physics of Semiconductors (World Scientific, Singapore, 1995), p. 2327.Google Scholar
13 Neugebauer, J. and Walle, C. G. Van de, in Proceedings of the 23d International Conference on the Physics of Semiconductors (World Scientific, Singapore, 1996) p. 2849.Google Scholar
14 Stampfl, C. and Walle, C. G. Van de, Appl. Phys. Lett. 72, 459 (1998).Google Scholar
15 Mattila, T. and Nieminen, R. M., Phys. Rev. B 54, 16676 (1996).Google Scholar
16 Mattila, T. and Nieminen, R. M., Phys. Rev. B 55, 9571 (1997).Google Scholar
17 Walle, C. G. Van de, Phys. Rev. B 57, R2033 (1998).Google Scholar
18 Stumpf, R. and Scheffler, M., Computer Phys. Commun. 79, 447 (1994)Google Scholar
19 Bockstedte, M., Kley, A., Neugebauer, J., and Scheffler, M., Comp. Phys. Commun. 107, 187 (1997).Google Scholar
20 Neugebauer, J. and Walle, C. G. Van de, Mater. Res. Soc. Symp. Proc. 408, 43 (1996).Google Scholar
21 Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
22 Boguslawski, P., Briggs, E. L., and Bernholc, J., Phys. Rev. B 51, 17255 (1995).Google Scholar
23 Rubio, A., Corkhill, J. L., Cohen, M. L., Shirley, E., and Louie, S. G., Phys. Rev. B 48, 11810 (1993).Google Scholar
24 Seifert, W., Franzheld, R., Butter, E., Sobotta, H., and Riede, V., Cryst. Res.& Technol. 18, 383 (1983).Google Scholar
25 Götz, W., Johnson, N. M., Chen, C., Liu, H., Kuo, C., and Imler, W., Appl. Phys. Lett. 68, 3144 (1996).Google Scholar
26 Götz, W., Walker, J., Romano, L. T., and Johnson, N. M., Mat. Res. Soc. Symp. Proc. 449, 525 (1997).Google Scholar
27 Piner, E. L., Behbehani, M. K., El-Masry, N. A., Roberts, J. C., McIntosh, F. G., and Bedair, S. M., Appl. Phys. Lett. 71, 2023 (1997).Google Scholar
28 Götz, W., Romano, L. T., Walker, J., Johnson, N. M., and Molnar, R. J., Appl. Phys. Lett. 72, 1214 (1998).Google Scholar
29 Look, D. C., and Molnar, R. J., Appl. Phys. Lett. 70, 3377 (1997).Google Scholar
30 Götz, W., Kern, R. S., Chen, C. H., Liu, H., Steigerwald, D. A., and Fletcher, R. M., Mater. Sci. and Engin. B (in press).Google Scholar
31 Perlin, P., Suski, T., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A., and Moustakas, T. D., Phys. Rev. Lett. 75, 296 (1995).Google Scholar
32 Wetzel, C., Suski, T., Ager, J. W. III, Weber, E. R., Haller, E. E., Fischer, S., Meyer, B. K., Molnar, R. J., and Perlin, P., Phys. Rev. Lett. 78, 3923 (1997).Google Scholar
33 Park, C. H. and Chadi, D. J., Phys. Rev. B 55, 12 995 (1997).Google Scholar
34 Hirsch, M. T., Wolk, J. A., Walukiewicz, W., and Haller, E. E., Appl. Phys. Lett. 71, 1098 (1997).Google Scholar
35 Wickenden, A. E., Beadie, G., Koleske, D. D., Rabinovich, W. S., and Freitas, J. A. Jr, Mat. Res. Soc. Symp. Proc. 449, 531 (1997).Google Scholar
36 Polyakov, A. Y., Shin, M., Freitas, J. A., Skowronski, M., Greve, D. W., and Wilson, R. G., J. Appl. Phys. 80, 6349 (1996).Google Scholar
37 Polyakov, A. Y., Smirnov, N. B., Govorkov, A. V., Mil'vidskii, M. G., Redwing, J. M., Shin, M., Skowronski, M., Greve, D. W., and Wilson, R. G., Solid-State Electronics 42, 627 (1998).Google Scholar
38 Yi, G.-C., and Wessels, B. W., Appl. Phys. Lett. 69, 3028 (1996).Google Scholar
39 Neugebauer, J. and Walle, C. G. Van de, Proc. Mater. Res. Soc. Symp. 395, 645 (1996).Google Scholar
40 Neugebauer, J. and Walle, C. G. Van de, in Festkirperprobleme/Advances in Solid State Physics, Vol. 35, edited by Helbig, R. (Vieweg, Braunschweig/Wiesbaden, 1996) p. 25.Google Scholar
41 Li, J. Z., Lin, J. Y., Jiang, H. X., Salvador, A., Botchkarev, A., and Morkoç, H., Appl. Phys. Lett. 69, 1474 (1996).Google Scholar
42 Johnson, C., Lin, J. Y., Jiang, H. X., Khan, M. A., , C. J. and , Sun, Appl. Phys. Lett. 68, 1808 (1996).Google Scholar
43 Walle, C. G. Van de, Phys. Rev. B 56, R10 020 (1997).Google Scholar
44 Leroux, M., Beaumont, B., Grandjean, N., Lorenzini, P., Haffouz, S., Vennéguès, P., Massies, J., and Gibart, P., Mat. Sci. Engin. B. 50, 97 (1997).Google Scholar
45 Kaufmann, U., Kunzer, M., Maier, M., Obloh, H., Ramakrishnan, A., Santic, B., and Schlotter, P.,. Appl. Phys. Lett. 72, 1326 (1998).Google Scholar
46 Calle, F., Monroy, E., Sdnchez, F. J., Muñoz, E., Beaumont, B., Haffouz, S., Leroux, M., and Gibart, P., MRS Internet J. Nitride Semicond. Res. 3, 24 (1998).Google Scholar
47 Nakamura, S., Iwasa, N., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 31, 1258 (1992).Google Scholar
48 Götz, W., Johnson, N. M., Walker, J., Bour, D. P., and Street, R. A., Appl. Phys. Lett. 68, 667 (1996).Google Scholar
49 Fiorentini, V., Bernardini, F., Bosin, A., and Vanderbilt, D., in Proceedings of the 23rd International Conference on the Physics of Semiconductors, edited by Scheffler, M., and Zimmer-mann, R. (World Scientific, Singapore, 1996), p. 2877.Google Scholar
50 Bernardini, F., Fiorentini, V., and Bosin, A., Appl. Phys. Lett. 70, 2990 (1997).Google Scholar
51 Bergman, P., Ying, G., Monemar, B., and Holtz, P. O., J. Appl. Phys. 61, 4589 (1987).Google Scholar
52 Brandt, O., Yang, H., Kostial, H., and Ploog, K. H., Appl. Phys. Lett. 69, 2707 (1996).Google Scholar
53 Ploog, K. H. and Brandt, O., J. Vac. Sci. Technol. A. 16, 1609 (1998).Google Scholar
54 Salvador, A., Kim, W., Aktas, O., Botchkarev, A., Fan, Z., and Morkoq, H., Appl. Phys. Lett. 69, 2692 (1996).Google Scholar
55 Ronning, C., Carlson, E. P., Thomson, D. B., and Davis, R. F., Appl. Phys. Lett. 73, 1622 (1998).Google Scholar
56 Sánchez, F. J., Calle, F., Sánchez-García, M. A., Calleja, E., Muñoz, E., Molloy, C. H., Somerford, D. J., Koschnick, F. K., Michael, K., and Spaeth, J. M., MRS Internet J. Nitride Semicond. Res. 3, 19 (1998).Google Scholar
57 Lee, J. W., Pearton, S. J., Zolper, J. C., and Stall, R. A., Appl. Phys. Lett. 68, 2102 (1996).Google Scholar