Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T22:54:02.415Z Has data issue: false hasContentIssue false

Directed self assembly of nanocrystals within macroscopic to nanoscopic features

Published online by Cambridge University Press:  26 February 2011

Scott K. Stanley
Affiliation:
[email protected], The University of Texas at Austin, 1 University Station, C0400, Austin, TX, 78712, United States
Shawn S. Coffee
Affiliation:
[email protected], The University of Texas at Austin, Department of Chemical Engineering, United States
John G. Ekerdt
Affiliation:
[email protected], The University of Texas at Austin, Department of Chemical Engineering, United States
Get access

Abstract

This paper discusses a kinetically-driven patterning scheme to marry top-down and bottom-up assembly of nanoparticle arrays. We explain how Ge atoms interact with different dielectric surfaces to either etch the surface or to accumulate and self assemble into nanocrystals during chemical vapor deposition. By exploiting the different reactivity of these dielectrics, the accumulation of adatoms is controlled and thus subsequent self assembly of nanocrystals is controlled. Scanning electron microscopy and atomic force microscopy are used to determine particle densities. We have achieved dense (>1011 cm-2) arrays of self-assembled Ge nanocrystals within ∼100 µm sized features (defined by optical lithography) with no Ge deposition on the adjacent SiO2 sacrificial mask region. Electron beam lithography was used to pattern smaller (100 µm to 500 nm) features in which to direct the self assembly. As features shrink below 10 µm, nanoparticle nucleation within the feature is sharply affected. Finally, diblock copolymers are used to pattern 20 nm features to template self assembly of nanoparticles at a scale useful for device applications.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tiwari, S.; Rana, F.; Hanafi, H.; Hartstein, A.; Crabbe, E. F.; Chan, K., Appl. Phys. Lett. 68 1377 (1996).Google Scholar
[2] Yang, H. G.; Shi, Y.; Pu, L.; Zhang, R.; Shen, B.; Han, P.; Gu, S. L.; Zheng, Y. D., Appl. Surf. Sci. 224 394 (2004).Google Scholar
[3] Wang, S. Y.; Liu, W. L.; Wan, Q.; Dai, J. Y.; Lee, P. F.; Suhua, L.; Shen, Q. W.; Zhang, M.; Song, Z. T.; Lin, C. L., Appl. Phys. Lett. 86 113105 (2005).Google Scholar
[4] Kamins, T. I.; Williams, R. S., Appl. Phys. Lett. 71 1201 (1997).Google Scholar
[5] Olzierski, A.; Nassiopoulou, A. G.; Raptis, I.; Stoica, T., Nanotechnology 15 1695 (2004).Google Scholar
[6] Stoica, T.; Vescan, L.; Sutter, E., J. Appl. Phys. 95 7707 (2004).Google Scholar
[7] Kitajima, T.; Liu, B.; Leone, S. R., Appl. Phys. Lett. 80 497 (2002).Google Scholar
[8] Shiralagi, K.; Zhang, R.; Tsui, R., J Crys. Growth 202 1209 (1999).Google Scholar
[9] Winningham, T. A.; Gillis, H. P.; Choutov, D. A.; Martin, K. P.; Moore, J. T.; Douglas, K., Surf. Sci. 406 221 (1998).Google Scholar
[10] Leach, W. T.; Zhu, J. H.; Ekerdt, J. G., J Crys. Growth 243 30 (2002).Google Scholar
[11] Leach, W. T.; Zhu, J. H.; Ekerdt, J. G., J Crys. Growth 240 415 (2002).Google Scholar
[12] Zhu, J. H.; Leach, W. T.; Stanley, S. K.; Ekerdt, J. G.; Yan, X. M., J. Appl. Phys. 92 4695 (2002).Google Scholar
[13] Basa, C.; Tinani, M.; Irene, E. A., J. Vac. Sci. Technol. A 16 2466 (1998).Google Scholar
[14] Stanley, S. K.; Ekerdt, J. G., In Chemistry of Nanomaterial Synthesis and Processing Mater. Res. Soc. Symp. Proc., ed. Peng, X.F. X., Liu, J., Ren, Z., and Voigt, J.A.. Vol. 879E. 2005, Warrendale, PA. Z3.23.Google Scholar
[15] Stanley, S. K.; Coffee, S. C.; Ekerdt, J. G., Appl. Surf. Sci. 252 878 (2005).Google Scholar
[16] Stanley, S. K.; Joshi, S. V.; Banerjee, S. K.; Ekerdt, J. G., J. Vac. Sci. Technol. A 24 (2006) In Press.Google Scholar
[17] Stanley, S. K., Joshi, S. V., Banerjee, S. K., Ekerdt, J. G., Surf. Sci. Lett. (2005) In review.Google Scholar