Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:32:59.880Z Has data issue: false hasContentIssue false

Development of an Ultra-High Vacuum Scanning Nonlinear Dielectric Microscope and Near Atomic-Scale Observation of Ferroelectric Material Surfaces

Published online by Cambridge University Press:  01 February 2011

Hiroyuki Odagawa
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980–8577, Japan
Yasuo Cho
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Sendai 980–8577, Japan
Get access

Abstract

This paper describes a newly developed ultra-high vacuum type scanning nonlinear dielectric microscope (UHV-SNDM) and the results from a ferroelectric LiTaO3 single crystal measured by the UHV-SNDM. In a cleaved (012) surface of LiTaO3 crystal, we can clearly observe a striped pattern with a period of about 0.3 nm and a granular pattern approximately corresponding to the sub-lattice period. From this image, we confirmed that the SNDM can be applied to lattice-level measurement in ferroelectric insulator materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gruverman, A., Auciello, O., Ramesh, R., and Tokumoto, H., Nanotechnology 8, A38 (1997).Google Scholar
2. Eng, L. M., Gu, H. -J., Schneider, G. A., Kopke, U., and Munoz Saldana, J., Appl. Phys. Lett. 74, 233 (1999).Google Scholar
3. Zavala, G., Fendler, J. H., and Trolier-McKinstr, S., J. Appl. Phys. 81, 7480 (1997).Google Scholar
4. Takashige, M., Hamazaki, S., Takahashi, Y., Shimizu, F., and Yamaguchi, T., Jpn. J. Appl. Phys. 38, 5686 (1999).Google Scholar
5. Kalinin, S. V. and Bonnell, D. A., J. Appl. Phys. 87, 3950 (2000).Google Scholar
6. Gao, C., Duewer, F., Lu, Y., and Xiang, X. D., Appl. Phys. Lett. 73, 1146 (1998).Google Scholar
7. Cho, Y., Kirihara, A., and Saeki, T., Denshi Joho Tsushin Gakkai Ronbunshi 78–c–1, 593 (1995) [in Japanese].Google Scholar
8. Cho, Y., Kirihara, A., and Saeki, T., Rev. Sci. Instrum. 67, 2297 (1996).Google Scholar
9. Cho, Y., Kazuta, S., and Matsuura, K., Appl. Phys. Lett. 75, 2833 (1999).Google Scholar
10. Odagawa, H. and Cho, Y., Surf. Sci. 463, L621 (2000).Google Scholar
11. Odagawa, H. and Cho, Y., Jpn. J. Appl. Phys. 39, 5719 (2000).Google Scholar
12. Matsuura, K., Cho, Y. and Odagawa, H., Jpn. J. Appl. Phys. 40, 3534 (2001).Google Scholar
13. Cho, Y., Fujimoto, K., Hiranaga, Y. and Wagatsuma, Y., Appl. Phys. Lett, 81, 4401 (2002).Google Scholar
14. Ohara, K. and Cho, Y., J. Appl. Phys., 96, 7460 (2004).Google Scholar
15. Ohara, K. and Cho, Y., Nanotechnology, 16 S54 (2005).Google Scholar