Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:33:20.189Z Has data issue: false hasContentIssue false

The Development and Evaluation of TiO2 Nanoparticle Films for Conductometric Gas Sensing on MEMS Microhotplate Platforms

Published online by Cambridge University Press:  01 February 2011

Kurt D. Benkstein
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology 100 Bureau Drive, MS 8362, Gaithersburg, MD 20899–8362, U.S.A.
Christopher B. Montgomery
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology 100 Bureau Drive, MS 8362, Gaithersburg, MD 20899–8362, U.S.A.
Mark D. Vaudin
Affiliation:
Materials Science and Engineering Laboratory
Steve Semancik
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology 100 Bureau Drive, MS 8362, Gaithersburg, MD 20899–8362, U.S.A.
Get access

Abstract

Over the past decade, MEMS microhotplate devices have been developed at the National Institute of Standards and Technology to support semiconductor metal oxide films for use in conductometric gas sensor arrays. In most cases, the materials have been based on compact thin films of SnO2 or TiO2 deposited by single-source precursor chemical vapor deposition. Of particular interest to our group is the enhancement of the sensitivity of the microsensors to trace gas species by inducing nanostructured porosity and large internal surface areas in the films. In this presentation, we discuss the development of nanostructured sensor materials based on porous TiO2 nanoparticle thin films. The preparation and evaluation of pure and Nb-doped TiO2 nanoparticle films are described. The films on the MEMS microhotplate substrates are evaluated as conductometric gas sensors based on the critical performance elements of sensitivity, stability, speed and selectivity. The sensor performance, and specifically the sensitivity, of the novel nanoparticle TiO2 films is compared with that of traditional compact CVD-derived films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barsan, N. and Weimar, U., J. Electroceram. 7, 143 (2002).Google Scholar
2. Park, C. O. and Akbar, S. A., J. Mat. Sci. 38, 4611 (2003).Google Scholar
3. Cavicchi, R. E., Walton, R. M., Aquino-Class, M., Allen, J. D. and Panchapakesan, B., Sens. Actuators, B 77, 145 (2001).Google Scholar
4. Savage, N. O., Roberson, S., Gillen, G., Tarlov, M. J. and Semancik, S., Anal. Chem. 75, 4360 (2003).Google Scholar
5. Traversa, E., Di Vona, M. L., Licoccia, S., Sacerdoti, M., Carotta, M. C., Crema, L. and Martinelli, G., J. Sol-Gel Sci. Tech. 22, 167 (2001).Google Scholar
6. Garcia-Belmonte, G., Kytin, V., Dittrich, T. and Bisquert, J., J. Appl. Phys. 94, 5261 (2003).Google Scholar
7. Wang, S.-H., Chou, T.-C. and Liu, C.-C., Sensors and Actuators B 94, 343 (2003).Google Scholar
8. Comini, E., Guidi, V., Frigeri, C., Ricco, G. and Sberveglieri, G., Sens. Actuators, B 77, 16 (2001).Google Scholar
9. Izu, N., Shin, W. and Murayama, N., Sensors and Actuators B 93, 449 (2003).Google Scholar
10. Nartowski, A. M. and Atkinson, A., J. Sol-Gel Sci. Tech. 26, 793 (2003).Google Scholar
11. Soulantica, K., Erades, L., Sauvan, M., Senocq, F., Maisonnat, A. and Chaudret, B., Adv. Funct. Mater. 13, 553 (2003).Google Scholar
12. Safonova, O., Bezverkhy, I., Fabrichnyi, P., Rumyantseva, M. and Gaskov, A., J. Mater. Chem. 12, 1174 (2002).Google Scholar
13. Huber, B., Gnaser, H. and Ziegler, C., Anal. Bioanal. Chem. 375, 917 (2003).Google Scholar
14. Hoel, A., Ederth, J., Kopniczky, J., Heszler, P., Kish, L. B., Olsson, E. and Granqvist, C. G., Smart Mater. Struct. 11, 640 (2002).Google Scholar
15. Suehle, J. S., Cavicchi, R. E., Gaitan, M. and Semancik, S., IEEE Electron Device Lett. 14, 118 (1993).Google Scholar
16. Semancik, S., Cavicchi, R. E., Wheeler, M. C., Tiffany, J. E., Poirier, G. E., Walton, R. M., Suehle, J. S., Panchapakesan, B. and DeVoe, D. L., Sens. Actuators, B 77, 579 (2001).Google Scholar
17. Cavicchi, R. E., Semancik, S., DiMeo, F. Jr and Taylor, C. J., J. Electroceram. 9, 155 (2003).Google Scholar
18. Zaban, A., Ferrere, S., Sprague, J. and Gregg, B. A., J. Phys. Chem. B 101, 55 (1997).Google Scholar
19. Kang, M. G., Park, N.-G., Park, Y. J., Ryu, K. S. and Chang, S. H., Sol. Energ. Mat. Sol. C. 75, 475 (2003).Google Scholar
20. Li, G., Martinez, C., Semancik, S., Smith, J. A., Josowicz, M. and Janata, J., Electrochem. SolidState Lett. 7, H44 (2004).Google Scholar
21. Semancik, S. and Cavicchi, R. E., Acc. Chem. Res. 31, 279 (1998).Google Scholar
22. Benkstein, K. D., Kopidakis, N., van de Lagemaat, J. and Frank, A. J., J. Phys. Chem. B 107, 7759 (2003).Google Scholar
23. Barbé, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V. and Grätzel, M., J. Am. Ceram. Soc. 80, 3157 (1997).Google Scholar
24. Shannon, R. D., Acta Crystallographica A32, 751 (1976).Google Scholar
25. Atashbar, M. Z., Sun, H. T., Gong, B., Wlodarski, W. and Lamb, R., Thin Solid Films 326, 238 (1998).Google Scholar
26. Comini, E., Faglia, G., Sberveglieri, G., Li, Y. X., Wlodarski, W. and Ghantasala, M. K., Sens. Actuators, B 64, 169 (2000).Google Scholar