Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:39:59.593Z Has data issue: false hasContentIssue false

Deformation Twinning in Ordered Intermetallic Compounds*

Published online by Cambridge University Press:  26 February 2011

M. H. Yoo
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115
C. L. Fu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115
J. K. Lee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6115
Get access

Abstract

Mechanistic understanding of deformation twinning in ordered superlattice structures is reviewed, and the inter-relationships between twinning and generalized plastic flow or fracture toughness are discussed. While general discussions refer to all the fcc-based and bcc-based cubic and noncubic ordered intermetallic alloys, specific calculations of the energetic and kinetic aspects of deformation twinning are made for TiAl. The importance of the twin-slip conjugate relationship on high temperature mechanical properties is emphasized. Discussion is given of possible effects of macro- and micro-alloying on twinning propensity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Permanent address: Department of Metallurgical Engineering, Michigan Technological University, Houghton, MI 49931

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Stoloff, N. S. and Davies, R. G., Prog. Mater. Sci., 13, 3 (1966).Google Scholar
2. Mahajan, S. and Williams, D. F., Int. Met. Rev., 18, 43 (1973).Google Scholar
3. Christian, J. W. and Laughlan, D. E., Acta Met.,, 36 1617 (1988).Google Scholar
4. Gray, G. T., Advances in Materials Science and Engineering, Pergamon Press.Google Scholar
5. Yoo, M. H., J. Mater. Res., 4, (1989).Google Scholar
6. Pashley, D. W., Robertson, J. L., and Stowell, M. J., Phil Mag., 19, 83 (1969).Google Scholar
7. Lipsitt, H. A., Shechtman, D., and Schafrik, R. E., Metall. Trans., 6A, 1991 (1975).Google Scholar
8. Feng, C. R., Michel, D. J., and Crowe, C. R., Scripta Metall., 22, 1481 (1988).Google Scholar
9. Hanamura, T., Uemori, R., and Taniro, M., J. Mater. Res., 3, 656 (1988)Google Scholar
10. Shechtman, D. and Jacobson, L. A., Metall. Trans., 6A, 1991 (1975).Google Scholar
11. Vanderschave, G. and Sarrazin, T., Phys. Stat. Solidi (a), 43, 459 (1977).Google Scholar
12. Faress, A. and Vanderschave, G., Acta Met., 35, 691 (1987).Google Scholar
13. Yamaguchi, M., Umakoshi, Y., and Yamane, T., Phil. Mag., 55, 301 (1987).Google Scholar
14. Umakoshi, Y., Yamaguchi, U., Yamane, T., and Hirano, T., Phil. Mag., 58, 651 (1988).Google Scholar
15. Vasudevan, V. K., Wheeler, R., and Fraser, H. L., paper (H4.11) in these proceedings.Google Scholar
16. Huang, S. C. and Hall, E. L., paper (H7.3*) in these proceedings.Google Scholar
17. Kad, B. and Oliver, B. F., paper (H5.9).Google Scholar
18. Hahn, Y. D. and Whang, S. H., paper (H7.4).Google Scholar
19. Takahashi, T. and Oikawa, H., paper (H5.8).Google Scholar
20. Fu, C. L. and You, M. H., Phil. Mag. Lett., 58, 199 (1988).Google Scholar
21. Lee, J. K. and You, M. H., to be published.Google Scholar
22. Fu, C. L. and You, M. H., paper (H1.12) in these proceedings.Google Scholar
23. You, M. H. and Loh, B. T. M., p. 479 in Fundamental Aspects of Dislocation Theory, ed. Simmons, J. A., deWit, R., and Bullough, R., US-NBS Spec. Publ. 317 1 (1970).Google Scholar
24. Sleeswyk, A. W. and Verbraak, C. A., Acta Met., 9, 917 (1961).Google Scholar
25. Saxl, I., Czech. J. Phys. (B), I8 39 (1968).Google Scholar
26. Yoo, M. H., Horton, J. A., and Liu, C. T., Acta Met., 36, 2935 (1988).Google Scholar
27. Fu, C. L. and Yoo, M. H., to be published.Google Scholar
28. Kawabata, T., Takezono, Y., Kanai, T., and Izumi, O., Acta Met. 36, 9163 (1988).Google Scholar
29. Tada, H., Paris, P. C., and Irwin, G. R., p 1.4b in The Stress Analysis of Cracks Handbook. Paris Prod. Inc., 1985.Google Scholar
30. Kear, B. H. and Oblak, J. M., J. de Physique, C7 35 (1974).Google Scholar
31. Guimier, A. and Strudel, J. L., Proc. 2nd Int. Conf. on the Strength of Metals and Alloys, Asilomar, 1970, p. 1145.Google Scholar
32. Yoo, M. H. and King, A. H., J. Mater. Res., 3, 848 (1988).Google Scholar
33. Kim, M. S., Hanada, S., Watanabe, S., and Izumi, O., Acta Met. 36, 2967 (1988).Google Scholar
34. Liu, Y., Takasugi, T., Izumi, O., and Takahashi, T., Acta Met. 36, 2959 (1988).Google Scholar
35. Cahn, R. W., Physical Metallurgy, ed. Cahn, R. W. and Haasen, P., Part II, North Holland Phys. Publ. (1983), p. 1628; Private Communication, 1988.Google Scholar
36. Hanada, S., Ogura, T., Watanabe, S., Izumi, O., and Masumoto, T., Acta Met., 34. 13 (1986).Google Scholar
37. Farkas, D., Jang, H., Lewus, M. O., Versaci, R., and Savino, E. J., p. 455 in Interfacial Structure. Properties and Design. ed. Yoo, M. H., Clark, W.A.T., and Briant, C. L., MRS Symp. Proc., vol.122, MRS Publication, Pittsburgh, PA, 1988.Google Scholar
38. Mackenzie, R.A.D., Vaudin, M. D., and Sass, S. L., p. 461 in Interfacial Structure. Properties and Design. ed. Yoo, M. H., Clark, W.A.T., and Briant, C. L., MRS Symp. Proc., vol.122, MRS Publication, Pittsburgh, PA, 1988.Google Scholar
39. King, A. H. and Yoo, M. H., p. 99 in High-Temperature Ordered Intermetallic Alloys II, ed. Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., MRS Symp. Proc., vol.81, MRS Publication, Pittsburgh, PA, 1987.Google Scholar
40. Funakubo, H., Shape Memory Alloys, Gordon and Breach Sci. Publ., New York, 1987.Google Scholar