Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:33:57.477Z Has data issue: false hasContentIssue false

Defect Reduction in GaAs Epilayers on Si Substrates Using Strained Layer Superlattices

Published online by Cambridge University Press:  28 February 2011

N. El-Masry
Affiliation:
Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleigh, North Carolina 27695
N. Hamaguchi
Affiliation:
Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleigh, North Carolina 27695
J.C.L. Tarn
Affiliation:
Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleigh, North Carolina 27695
T.P. Humphreys
Affiliation:
Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleigh, North Carolina 27695
D. Moore
Affiliation:
Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleigh, North Carolina 27695
S.M. Bedair
Affiliation:
Electrical and Computer Engineering DepartmentNorth Carolina State UniversityRaleigh, North Carolina 27695
J. W. Lee
Affiliation:
Kopin Corporation Taunton, Massachusetts
Get access

Abstract

InxGa11-xAs-GaAsl-yPy strained layer superlattice buffer layers have been used to reduce threading dislocations in GaAs grown on Si substrates. However, for an initially high density of dislocations, the strained layer superlattice is not an effective filtering system. Consequently, the emergence of dislocations from the SLS propagate upwards into the GaAs epilayer. However, by employing thermal annealing or rapid thermal annealing, the number of dislocation impinging on the SLS can be significantly reduced. Indeed, this treatment greatly enhances the efficiency and usefulness of the SLS in reducing the number of threading dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Dapuis, R.D., Beam, J.C., Brown, J.M., Macrander, A.T., Miller, R.C. and Hopkins, L.C., J. Elect. Mat., 16, 69 (1987).Google Scholar
2) Fisher, R., Morkoc, H., Neuman, D.A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M. and Erickson, L.P., J. Appl. Phys., 60, 1640 (1986).Google Scholar
3) Soga, T., Hattori, S., Sakai, S., Takayasu, M. and Umeno, M., J. Appl. Phys., 57, 4578 (1985).Google Scholar
4) Bedair, S.M., Whisnant, J.K., Karam, N., Tischler, M.A. and Katsuyama, T., Appl. Phys. Lett., 48, 174 (1986)Google Scholar
5) Lee, J.W., Shichijo, H., Tsai, H.L. and Matyi, R.J., Appl. Phys. Lett., 50, 31 (1987).Google Scholar
6) Chand, N., People, R., Baiocchi, F.A., Wecht, K.W. and Cho, A.Y., Appl. Phys. Lett., 49, 815 (1986).Google Scholar
7) Bedair, S.M., Humphreys, T.P., El-Masry, N.A., Lo, Y., Hamaguchi, N., Lamp, C.D., Dreifus, D. and Russell, P., Appl. Phys. Lett., 49, 942 (1986).Google Scholar
8) Matthews, J.W., Blakeslee, A.E. and Mader, S., Thin Solid Films, 33, 253 (1976).Google Scholar
9) Tischler, M.A., Katsuyama, T., El-Masry, N. and Bedair, S.M., Appl. Phys. Lett., 46, 294 (1985).Google Scholar
10) Hull, R., Rosner, S.J., Koch, S.M. and Harris, J.S., Appl. Phys. Lett., 49, 1714 (1986).Google Scholar