Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-16T08:01:34.584Z Has data issue: false hasContentIssue false

Defect Heterojunction Model for Anomalous Photoresponse of P/N GaAs Grown on N-Ge Substrates

Published online by Cambridge University Press:  25 February 2011

Larry Partain
Affiliation:
Varian Research Center, 611 Hansen Way, Palo Alto, CA 94303
Marc Grounner
Affiliation:
Varian Research Center, 611 Hansen Way, Palo Alto, CA 94303
Get access

Abstract

A GaAs p/n junction grown on a n-Ge substrate has an anomalous photoresponse that includes a quantum yield response starting at the 0.7-eV band edge of Ge. In terrestrial sunlight, its I-V characteristic has an anomalous “notched” shape that is progressively removed by increasing the infrared light content. The I-V is well modeled by a space-charge-limited-current diode theory with a GaAs/Ge interface defect density of 1.92 (1012) cm−2 eV−1 at 0.4 eV below the conduction band edge. Similar defect densities have been reported for GaAs/oxide interfaces and for a GaAs p/n junction interface specially selected for high defect densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yeh, Y. C. M. et al., 20th IEEE Photovoltaic Spec. Conf., Las Vegas, Sept. 1988.Google Scholar
2. Tobin, S. P. et al., IEEE Electron Device Lett. 9, 256 (1988).Google Scholar
3. Partain, L. D. et al., 20th IEEE Photovoltaic Spec. Conf., Las Vegas, Sept. 1988.Google Scholar
4. Hart, R. E. et al., 20th IEEE Photovoltaic Spec. Conf., Las Vegas, Sept. 1988.Google Scholar
5. Sah, C. T. et al., Proc. IRE 45, 1228 (1957).CrossRefGoogle Scholar
6. Partain, L. D., J. Appl. Phys. 54, 5218 (1983).Google Scholar
7. Partain, L. D., J. Appl. Phys. 61, 5458 (1987).Google Scholar
8. Partain, L. D. and Liu, D. D., Appl. Phys. Lett. 54, 928 (1989).Google Scholar
9. Lampert, M. A. and Mark, P., in Current Iniection in Solids (Academic Press, New York, 1970), Chap. 2-5.Google Scholar
10. Bertness, K. A. et al., 20th IEEE Photovoltaic Spec. Conf., Las Vegas, Sept. 1988.Google Scholar
11. Hovel, H. J., in Solar Cells, Semiconductors and Semimetals, Vol. 11, ed. Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1975), pp. 5, 25.Google Scholar
12. Emery, K. et al., Solar Cells 5, 341 (1962).Google Scholar
13. Partain, L. D. et al., J. Appl. Phys. 58, 3784 (1985).Google Scholar
14.Solecon Laboratories, San Jose, CA 95131.Google Scholar
15. Shimano, A. et al., Japn. J. Appl. Phys. 15, 939 (1976).Google Scholar
16. Zeisse, C. R. et al., J. Vac. Sci. Technol. 14, 957 (1977).Google Scholar
17. Hasegawa, H. and Sawada, T., J. Vac, Sci. Technol. 21, 457 (1982).Google Scholar
18. Chung, S. et al., IEEE Trans. Electron Dev. ED–35, 1585 (1988).Google Scholar
19. Bird, R. and Riordan, C., Tech. Report SERI/TR-215-2436 (Solar Energy Research Institute, CO, Dec. 1984), Fig. 5-2.Google Scholar
20. Rothwarf, A., 13th IEEE Photovoltaic Spec. Conf. (IEEE, New York, 1978), p. 399.Google Scholar
21. Gee, J. M., 19th IEEE Photovoltaic Spec. Conf., (IEEE, New York, 1987), p. 1390.Google Scholar
22. MacMillan, H. F. et al., 20th IEEE Photovoltaic Spec. Conf., Las Vegas, Sept. 1988.Google Scholar