Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:49:24.633Z Has data issue: false hasContentIssue false

Defect Formation in CW CO2 Laser Annealed Silicon

Published online by Cambridge University Press:  15 February 2011

H. Baumgart
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
F. Phillipp
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA Max Planck Institut fur Metallforschung, Heisenbergstr. 1, D–7000 Stuttgart, 80, Germany
H. J. Leamy
Affiliation:
Bell Laboratories, Murray Hill, New Jersey, 7974, USA
Get access

Abstract

The EBIC mode of the SEM has been used to investigate the perfection of cw CO2 laser annealed Si. Even in material that contains no slip lines, non-uniform charge collection is found. A combined X-ray and electron microscopy (TEM, SEM) study identified the residual defects responsible for the EBIC contrast as interstitial submicron dislocation loops. Scanning cw laser annealing independent of the wavelength (10.6μm or 0.514μm) always introduces residual defects which act as recombination centers and reduce minority carrier lifetime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Celler, G. K., Borutta, R., Brown, W. L., Poate, J. M., Rozgonyi, G. A. and Sheng, T. T., in AlP Conf. Proc., “Laser Solid Interactions and Laser Processing”, ed. by Ferris, S. D., Leamy, H. J. and Poate, J. M., Vol. 50, p. 381 (1978).Google Scholar
2. Miyao, M., Ohyu, K. and Tokuyama, T., Appl. Phys. Lett. 35, (3), 227 (1979).Google Scholar
3. Celler, G. K., Poate, J. M. and Kimerling, L. C., Appl. Phys. Lett., 32, 464 (1978).Google Scholar
4. Rozgonyi, G. A., Leamy, H. J., Sheng, T. T. and Celler, G. K. in AIP Conf. Proc., “Laser Solid Interactions and Laser Processing” ed. by Ferris, S. D., Leamy, H. J. and Poate, J. M., Vol. 50, p. 257 (1978).Google Scholar
5. Celler, G. K., Poate, J. M., Rozgonyi, G. A. and Sheng, T. T., J. Appl. Phys. 50, (11), 7264 (1979).CrossRefGoogle Scholar
6. Baumgart, H., Phillipp, F., Rozgonyi, G. A. and Gosele, U., Appl. Phys. Lett. 38(2), 95 (1981).Google Scholar
7. Mizuta, M., Sheng, N. H., Merz, J. L., Lietoila, A., Gold, R. B. and Gibbons, J. F., Appl. Phys. Lett. 37, (2) 154 (1980).Google Scholar
8. Sheng, N. H., Mizuta, M. and Merz, J. L., in “Laser and Electron Beam Solid Interactions and Materials Processing”, ed. by Gibbons, J. F., Hess, L. D. and Sigmon, T. W., North Holland, p. 155 (1981).Google Scholar
9. Uebbing, R., Wagner, P., Baumgart, H. and Queisser, H. J., Appl. Phys. Lett. 37, 1078 (1980).CrossRefGoogle Scholar
10. Baumgart, H., Hildebrand, O., Phillipp, F. and Rozgonyi, G. A. in: Proceedings of the 2ndOxford Conf. on Microscopy of Semiconducting Materials April 1981, Inst. Phys. Conf. Ser. No. 60: Section 2, p. 127 (1981).Google Scholar
11. Ishida, K., Okabayashi, H. and Yoshida, M., Appl. Phys. Lett., 37 (2), 175 (1980).CrossRefGoogle Scholar