Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T15:52:16.547Z Has data issue: false hasContentIssue false

D-band Raman Spectra of Graphite and Single Wall Carbon Nanotubes

Published online by Cambridge University Press:  15 March 2011

R. Saito
Affiliation:
Dept. of Electronic Eng., Univ. of Electro-Communications, Chofu Tokyo 182-8585, Japan
A. Grueneis
Affiliation:
Dept. of Electronic Eng., Univ. of Electro-Communications, Chofu Tokyo 182-8585, Japan
L. G. Cançcado
Affiliation:
Dept. de F sica, Univ. Federalde Minas Gerais, Belo Horizonte-MG, 30123-970, Brazil
M. A. Pimenta
Affiliation:
Dept. de F sica, Univ. Federalde Minas Gerais, Belo Horizonte-MG, 30123-970, Brazil
A. Jorio
Affiliation:
Dept. of Physics
A. G. Souza Filho
Affiliation:
Dept. de Fsica, Univ. Federal do Ceara, Fortaleza-CE, 60455-900, Brazil
G. Dresselhaus
Affiliation:
Francis BitterMagnet Laboratory
M. S. Dresselhaus
Affiliation:
Dept. of Physics Dept. of Electrical Eng. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
Get access

Abstract

The double resonance Raman spectra of the disorder-induced D-band and some other non-zone-center phonon modes are discussed for two-dimensional (2D) graphite and to some extent for single wall carbon nanotubes (SWNTs). The phonon dispersion relations of graphite can be determined using Raman spectroscopy b y measuring the non-zone center Raman phonon frequencies in combination with theoretically determined phonon q-vectors. We report a t of the phonon dispersion relations to experimental Raman spectra which were previously observed but have not y et been assigned to speci c phonon branches. We found that the D-band and the G0-band of 2D graphite consist of, respectively, two and one Raman Lorentzian peaks, while 3D graphite shows two G0-band Lorentzian peaks. The appearance of two G0 peaks in the resonance Raman spectra of SWNTs may come from resonances of one laser line with two di erent van Hov e singularities.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Collins, P. G., Arnold, M. S., and Avouris, Ph., Science 292, 706 (2001).Google Scholar
[2] Jorio, A., et al., Phys. Rev. Lett. 86, 11181121 (2001).Google Scholar
[3] Jorio, A., et al., unpublished.Google Scholar
[4] Filho, A. G. Souza, et al., Phys. Rev. B 64 in press (2001).Google Scholar
[5] Filho, A. G. Souza, et al., Phys. Rev. B, in press (2002).Google Scholar
[6] Jorio, A., et al., Phys. Rev. B 63, 5416 (2001).Google Scholar
[7] Filho, A. G. Souza, et al., Phys. Rev. B 63, 241404R (2001).Google Scholar
[8] Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).Google Scholar
[9] Saito, R., et al., Phys. Rev. Lett. in press (2002).Google Scholar
[10] Tuinstra, F. and Koenig, J. L., J. Chem. Phys. 53, 1126 (1970).Google Scholar
[11] Dresselhaus, M. S. and Eklund, P. C., Advances in Physics 49, 705814 (2000).Google Scholar
[12] Dresselhaus, M. S., et al., Carbon, in press (2002).Google Scholar
[13] Martin, R. M. and Falico, L. M. v. InLight-Scattering in Solids, edited by Cardona, M., page 80. Springer-Verlag, Berlin, 1975.Google Scholar
[14] Cançcado, L. G., et al., unpublished.Google Scholar
[15] Wilhelm, H., et al., J. Appl. Phys. 84, 6552 (1998).Google Scholar
[16] Filho, A. G. Souza, et al., in this issue.Google Scholar
[17] Pimenta, M. A., et al., Brazilian J. Phys. 30, 423427 (2000).Google Scholar
[18] Filho, A. G. Souza, et al. unpublished.Google Scholar
[19] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).Google Scholar