Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:28:19.595Z Has data issue: false hasContentIssue false

Critical Field Measurements on Superconducting Graphite-KHG Multilayers

Published online by Cambridge University Press:  25 February 2011

A. Chaiken
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
P. M. Tedrow
Affiliation:
Francis Bitter National Magnet Laboratory b, Cambridge, MA 02139
G. Dresselhaus
Affiliation:
Francis Bitter National Magnet Laboratory b, Cambridge, MA 02139
Get access

Abstract

Upper critical fields of graphite-KHg multilayers with 10Å periodicity were measured as a function of angle and temperature. The Hc2 (θ, T) data were compared to the anisotropic Ginzburg-Landau model and were found to be in qualitative agreement, except at the lowest reduced temperatures, where significant deviations are found. The primary deviations from the anisotropic GL model are first, that the values of the critical field at the lowest temperatures are found to be higher than that predicted by the model, and secondly, the critical field anistropy ratio is found to be temperaturedependent. These deviations are discussed in light of more detailed models of anisotropic superconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Supported by AFOSR Contract #F49620-83-C-0011.

b

Supported by NSF.

References

REFERENCES

1.Ourmazd, A., Rentshler, J.A., Spence, J.C.H., O'Keeffe, M., Graham, R.J., Johnson, D.W. Jr., and Rhodes, W.W., Nature 327, 308 (1987).Google Scholar
2.Ruggiero, S.T. and Beasley, M.R., in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, New York, 1985), p. 365.Google Scholar
3.Banerjee, I. and Schuller, I.K., J. Low Temp. Phys. 54, 501 (1984).Google Scholar
4.Woollam, J.A., Somoano, R.B., and O'Connor, P., Phys. Rev. Lett. 32, 712 (1974).Google Scholar
5.Lagrange, P., El-Makrini, M., Guérard, D., and Hérold, A., Synthetic Met. 2, 191 (1980).Google Scholar
6.lye, Y. and Tanuma, S., Phys. Rev. B 25, 4583 (1982).Google Scholar
7.Orlando, T.P., McNiff, E.J., Foner, S., and Beasley, M.R., Phys. Rev. B 19, 4545 (1979).Google Scholar
8.Roth, G., Chaiken, A., Enoki, T., Yeh, N.C., Dresselhaus, G. and Tedrow, P. M., Phys. Rev. B 32, 533 (1985).Google Scholar
9.Toyota, N., Nakatsuji, H., Hoshi, A., Kobayashi, N., Muto, Y., and Onodera, Y., J. Low Temp. Phys. 25, 485 (1976).Google Scholar
10.Pendrys, L.A., Wachnik, R.A., Vogel, F.L., and Lagrange, P., Synth. Met. 5, 277 (1980).Google Scholar
11.Biagi, K.R., Kogan, V.G., and Clem, J.R., Phys. Rev. B 32, 7165(1985).Google Scholar
12.Takahashi, S. and Tachiki, M., Phys. Rev. B 33, 4620 (1986).Google Scholar
13.Klemm, R. A., Luther, A., and Beasley, M. R., Phys. Rev. B 12, 877 (1975).Google Scholar
14.Kamimura, H., Ann. de Phys. 11, Suppl. 2, 39 (1986).Google Scholar
15.Entel, P. and Peter, M., J. Low Temp. Phys. 22, 613 (1976).Google Scholar
16.Youngner, D.W. and Klemm, R.A., Phys. Rev. B 21, 3890 (1980).Google Scholar