No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
Plastic yielding in glassy solids has been interpreted as a strain-biased relaxation process, or, equivalently, as a strain-induced glass transition. In the present work, the atomic motions caused by athermal plastic deformation of a binary Lennard-Jones glass are compared to thermal motion in the liquid in terms of the self part of the intermediate structure factor. We find that like at finite temperature, athermal plastic deformation leads to diffusive atomic motion at all length scales beyond about one interatomic distance, effectively promoting structural relaxation. The present approach allows to study the interplay of deformation-induced and thermal relaxation. Preliminary evidence is presented that these two processes occur independently of each other over a wide range of strain rates.