Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T20:01:47.918Z Has data issue: false hasContentIssue false

Characterization of Silicon Nanoparticles Prepared from Porous Silicon

Published online by Cambridge University Press:  15 February 2011

Richard A. Bley
Affiliation:
Department of Chemistry, University of California, Davis, CA 95616
Susan M. Kauzlarich
Affiliation:
Department of Chemistry, University of California, Davis, CA 95616
Howard W. H. Lee
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Jeffrey E. Davis
Affiliation:
Department of Applied Science, University of California, Davis, CA 95616
Get access

Abstract

Nanometer sized silicon particles have been produced by ultrasonic dispersion of thin sections of porous silicon in organic solvents. High resolution TEM and FTIR have been used to establish the size range and surface structure/composition of these particles. The larger particles, which range in size from 20 to 50 nm, are made up of a conglomeration of smaller particles with a diameter of a few nanometers. The HRTEM shows an amorphous layer on the surface of many of the clusters. FTIR data suggest this amorphous layer is silicon-dioxide which may also have organic constituents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heinrich, J.L., Curtis, C.L., Credo, G.M., Kavanagh, K.L., Sailor, M.J., Science 255, 66 (1992).Google Scholar
2. Berhane, S., Kauzlarich, S.M., Nishimura, K., R. Smith, L., Davis, J.E., Lee, H. W. H., Olsen, M. L. S., Chase, L. L., Mat. Res. Soc. Symp. Proc. 298, 99 (1993)Google Scholar
3. Prokes, S.M., J. Appl. Phys. 73, 407 (1993).Google Scholar
4. Fuchs, H.D., Brandt, M.S., Stutzmann, M., Weber, J., Mat. Res. Soc. Symp. Proc. 256, 159 (1992).Google Scholar
5. Sailor, M.J., Kavanagh, K.L., Adv. Mater. 4, 432 (1992).Google Scholar
6. Pillai, S.M., Xu, Z.Y., Gal, M., Glaisher, R., Philliips, M., Cockayne, D., Jpn. J. Appl. Phys. 31, L1702 (1992).Google Scholar
7. Littau, K.A., Szajowshki, P.J., Muller, A.J., Kortan, A.R., Brus, L.E., J. Phys. Chem. 97, 1224 (1993).Google Scholar
8. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
9. Wu, J.J., Flagan, R.C., J. Appl. Phys. 61, 1365 (1987).Google Scholar
10. Hayashi, S., Tanimoto, S., Yamamoto, K., J. Appl. Phys. 68, 5300 (1990).Google Scholar
11. Okada, R., Ijima, S., Appl. Phys. Lett. 58, 1662 (1991).Google Scholar
12. Ijima, S., Jpn. J. Appl. Phys. 26, 357 (1987).Google Scholar
13. Saito, Y., J. Cryst. Growth 47, 61 (1979).Google Scholar
14. Heath, J.R., Science 258, 1131 (1992).Google Scholar
15. Lee, H. W. H., Davis, J. E., Olsen, M. L., Kauzlarich, S. M., Bley, R. A., Risbud, S., Duval, D., Mat. Res. Soc. Symp. Pro. This volume.Google Scholar
16. Gupta, P., Colvin, V. L., George, S. M., Phys. Rev. B 37, 8234 (1988).Google Scholar
17. Borghesi, A., Sassella, A., Pivac, B., Pavesi, L., Solid State Commun. 87, 1 (1993)Google Scholar