Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T19:00:06.869Z Has data issue: false hasContentIssue false

A Cathodoluminescence Study of the Defects Created by the Degradation of High Power AlGaAs/GaAs Multiemitter Laser Bars

Published online by Cambridge University Press:  01 February 2011

Alonso Martín-Martín
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Manuel Avella
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
M. Pilar Iñiguez
Affiliation:
[email protected], Universidad de Valladolid, Física Teórica, Atómica y Óptica, Valladolid, Spain
Juan Jiménez
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Myriam Oudart
Affiliation:
[email protected], Alcatel-Thales, Palaiseau, France
Julien Nagle
Affiliation:
[email protected], Thales Research & Technology, Palaiseau, France
Get access

Abstract

In this work we study the defects responsible for the degradation of high power AlGaAs based laser bars. The mirror and cavity degradations are studied by spectral cathodoluminescence (CL) imaging. Following the analysis of the CL images the main defects generated during the laser operation are revealed, both facet and intracavity defects are observed. A thermomechanical model is used to describe the very beginning of the defect formation. The defects are formed by a local plastic deformation induced by local heating at defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Neukum, J., Optics & Laser Europe 165, 37 (2008).Google Scholar
2. Quantum Well Laser Array Packaging, edited by J.W. Tomm and J. Jiménez (MacGraw-Hill, New York, 2006).Google Scholar
3. Welch, D. F., IEEE J. Selected Topics in Quantum Electron. 6, 1470 (2000).Google Scholar
4. Henry, C. H., Petroff, P. M., Logan, R. A. and Merritt, F. R., J. Appl. Phys. 50, 3721 (1979).Google Scholar
5. Tomm, J. W., Gerhard, A., Malyarchuk, V., Saint-Marie, Y., Galtier, P., Nagle, J. and Landesman, J. P., J. Appl. Phys. 93, 1354 (2003).Google Scholar
6. Andrianov, A. V., Dods, S. R. A., Morgan, J., Orton, J. W., Benson, T. M., Harrison, I., Larkins, E. C., Daiminger, F. X., Vassilakis, E. and Hirtz, J. P., J. Appl. Phys. 87, 3227 (2000).Google Scholar
7. Pommiès, M., Avella, M., Cánovas, E., Jiménez, J., Fillardet, T., Oudart, M. and Nagle, J.; Appl. Phys. Lett. 86, 131103 (2005).Google Scholar
8. Yu, H., Roberts, C., Murray, R.; Appl. Phys. Lett. 66, 2253 (1995).Google Scholar
9. Pommiés, M., Avella, M., Jiménez, J., Oudart, M. and Nagle, J.; Phys. Stat. Sol. (a) 202, 625 (2005).Google Scholar
10. Martín-Martín, A., Avella, M., Iñiguez, M. P., Jiménez, J., Oudart, M. and Nagle, J.; Appl. Phys. Lett. 93, 171106 (2008).Google Scholar
11. Landolt, M. and Börnstein, J., Numerical Data and Functional Relationships in Science and Technology, vol. 22/A of New Series, Group III , (Berlin: Springer, 1987) and REFERENCES therein.Google Scholar
12. Swaminathan, V. and Copley, S. M., J. Am. Ceram. Soc. 58, 482 (1975).Google Scholar
13. Suzuki, T., Yasutomi, T., Tokuoka, T. and Yonenaga, I., Phil. Mag. A 79, 2637 (1999).Google Scholar