Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T07:48:34.678Z Has data issue: false hasContentIssue false

Cantilever Epitaxy of GaN on Sapphire: Further Reductions in Dislocation Density

Published online by Cambridge University Press:  11 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
P. P. Provencio
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
D. D. Koleske
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
C. C. Mitchell
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
A. A. Allerman
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
N. A. Missert
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
C. I. H. Ashby
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–1056
Get access

Abstract

The density of vertical threading dislocations at the surface of GaN grown on sapphire by cantilever epitaxy has been reduced with two new approaches. First, narrow mesas (<1 μm wide) were used and {11–22} facets formed over them early in growth to redirect dislocations from vertical to horizontal. Cross-sectional transmission electron microscopy was used to demonstrate this redirection and to identify optimum growth and processing conditions. Second, a GaN nuc-leation layer with delayed 3D → 2D growth transition and inherently lower threading dislocation density was adapted to cantilever epitaxy. Several techniques show that a dislocation density of only 2–3×107/cm2 was achieved by combining these two approaches. We also suggest other developments of cantilever epitaxy for reducing dislocations in heteroepitaxial systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Speck, J. S. and Rosner, S. J., Physica B 273–274, 24 (1999).Google Scholar
2. Zheleva, T. S., Nam, O.-H., Bremser, M. D. and Davis, R. F., Appl. Phys. Lett. 71, 2472 (1997).Google Scholar
3. Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 71, 1024 (1997).Google Scholar
4. Hiramatsu, K., Nishiyama, K., Onishi, M., Mizutani, H., Narukawa, M., Motogaito, A., Miyake, H., Iyechika, Y. and Maeda, T., J. Cryst. Gro. 221, 316 (2000).Google Scholar
5. Linthicum, K., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Batchelor, D. and Davis, R., Appl. Phys. Lett. 75, 196 (1999).Google Scholar
6. Ashby, C. I. H., Mitchell, C. C., Han, J., Missert, N. A., Provencio, P. P., Follstaedt, D. M., Peake, G. M. and Griego, L., Appl. Phys. Lett. 77, 3233 (2000).Google Scholar
7. Follstaedt, D. M., Provencio, P. P., Missert, N. A., Mitchell, C. C., Koleske, D. D., Allerman, A. A. and Ashby, C. I. H., Appl. Phys. Lett. 81, 2758 (2002).Google Scholar
8. Katona, T. M., Craven, M. D., Fini, P. T., Speck, J. S. and DenBaars, S. P., Appl. Phys. Lett. 79, 2907 (2001).Google Scholar
9. Strittmatter, A., Rodt, S., Reiβmann, L., Bimberg, D., Schröder, H., Obermeier, E., Riemann, T., Christen, J. and Krost, A., Appl. Phys. Lett. 76, 727 (2001).Google Scholar
10. Detchprohm, T., Yano, M., Sano, S., Nakamura, R., Mochiduki, S., Nakamura, T., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 40, L16 (2001).Google Scholar
11. Sakai, A., Sunakawa, H. and Usui, A., Appl. Phys. Lett. 71, 2259 (1997); Appl. Phys. Lett. 76, 442 (2000).Google Scholar
12. Koleske, D. D., Fischer, A. J., Allerman, A. A., Mitchell, C. C., Cross, K. C., Kurtz, S. R., Figiel, J. J., Fullmer, K. W., and Breiland, W. G., Appl. Phys. Lett. 81, 1940 (2002).Google Scholar
13. Provencio, P. P., Follstaedt, D. M., Missert, N. A., Koleske, D. D., Mitchell, C. C., Allerman, A. A. and Ashby, C. I. H., paper L3.15, these proceedings.Google Scholar
14. Coultrin, M. E., Willan, C. C., Bartram, M. E., Han, J., Missert, N., Crawford, M. H. and Baca, A. G., MRS Internet J. Nitride Semicond. Res. 4S1, G6.9 (1999).Google Scholar
15. Rosner, S. J., Carr, E. C., Lodowise, M. J., Girolami, G. and Erikson, H. I., J. Appl. Phys. 70, 420 (1997).Google Scholar