Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:46:55.718Z Has data issue: false hasContentIssue false

Calculations of Atomic and Electronic Structure for (100) Surfaces of SrTiO3 Perovskite

Published online by Cambridge University Press:  01 February 2011

R. I. Eglitis
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany
E. Heifets
Affiliation:
California Institute of Technology, Ms 139-74, Pasadena CA 91125, USA
E. A. Kotomin
Affiliation:
Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., Riga LV-1063, Latvia
G. Borstel
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany
Get access

Abstract

We present and discuss main results of the calculations for the surface relaxation and rumpling of SrTiO3 surfaces with TiO2 and SrO terminations using a wide variety of methods of modern computational physics and chemistry, including the shell model (SM) and ab initio methods based on Hartree-Fock (HF) and Density Functional Theory (DFT). The HF and DFT formalisms with different exchange-correlation functionals are implemented into Crystal-98 computer code using a Gaussian-type basis set. We demonstrate that a hybrid B3PW formalism gives the best results for the bulk SrTiO3 properties. Results are compared with previous ab initio plane-wave LDA calculations and LEED experiments. Our calculations demonstrate an increase of the covalency effects between Ti and O atoms near the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon, Oxford, 1977.Google Scholar
2. Noguera, C., Physics and Chemistry at Oxide Surfaces, Cambridge Univ. Press, N.Y., 1996.Google Scholar
3. Scott, J. F., Ferroelectric Memories (Springer, Berlin, 2000).Google Scholar
4. Proceedings of the Williamsburg workshop on Fundamental Physics of Ferroelectrics-99, J. Phys. Chem. Sol. 61, No 2 (2000).Google Scholar
5. Bickel, N., Schmidt, G., Heinz, K., and Müller, K., Phys. Rev. Lett. 62, 20092013 (1989).Google Scholar
6. Hikita, T., Hanada, T., Kudo, M., and Kawai, M., Surf. Sci. 287/288, 377380 (1993).Google Scholar
7. Kudo, M., Hikita, T., Hanada, T., Sekine, R., and Kawai, M., Surf. and Interf. Analysis 22, 412416 (1994).Google Scholar
8. Kido, Y., Nishimura, T., Hoshido, Y., Mamba, H., Nucl. Inst. Meth. B161-163, 371 (2000).Google Scholar
9. Charlton, G., Brennan, S., Muryn, C.A., McGrath, R. et. al., Surf. Sci. 457, L376 (2000).Google Scholar
10. Padilla, J., and Vanderbilt, D., Surf. Sci. 418, 6470 (1998).Google Scholar
11. Padilla, J., and Vanderbilt, D., Phys. Rev. B56, 16251630 (1997).Google Scholar
12. Meyer, B., Padilla, J., and Vanderbilt, D., Faraday Discussions 114, 395405 (1999).Google Scholar
13. Cora, F., and Catlow, C.R.A., Faraday Discussions 114, 421430 (1999).Google Scholar
14. Cohen, R.E., Ferroelectrics 194, 323342 (1997).Google Scholar
15. Fu, L., Yashenko, E., Resca, L., and Resta, R., Phys. Rev. B60, 26972703 (1999).Google Scholar
16. Cheng, C., Kunc, K., and Lee, M.H., Phys. Rev. B62, 1040910417 (2000).Google Scholar
17. Demakov, A.A., Phys. Stat. Solidi B226, 57 (2001).Google Scholar
18. Tinte, S., and Stachiotti, M.G., AIP Conf. Proc 535 (ed. Cohen, R), 273282 (2000).Google Scholar
19. Heifets, E., Kotomin, E.A., and Maier, J., Surf. Sci. 462, 1935 (2000).Google Scholar
20. Kotomin, E.A., Eglitis, R.I., Maier, J., and Heifets, E., Thin Solid Films 400, 7680 (2001).Google Scholar
21. Causa, M., and Zupan, A., Chem. Phys. Lett. 220, 145 (1994).Google Scholar
22. Saunders, V.R., Dovesi, R., Roetti, C., Causa, M., Harrison, N.M., Orlando, R. and Zicovich-Wilson, C.M., Crystal-98 User Manual (University of Turin, 1999).Google Scholar
23. Heifets, E., Eglitis, R., Kotomin, E., Maier, J., and Borstel, G., Phys. Rev. B 64, 235417 (2001).Google Scholar
24. Goniakowski, J., and Noguera, C., Surf. Sci. 365, L657 (1996).Google Scholar