Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T16:01:28.817Z Has data issue: false hasContentIssue false

Blue Second-Harmonic Light Generation From A New Organic Single Crystal, 8-(4′-Acetylphenyl)-1,4-Dioxa-8-Azaspiro[4.5]Decane(Apda)

Published online by Cambridge University Press:  16 February 2011

Masakazu Sagawa
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7–1–1, OMika-cho, Hitachi Ibaraki 319–12, Japan
Hiroyuki Kagawa
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7–1–1, OMika-cho, Hitachi Ibaraki 319–12, Japan
Atsushi Kakuta
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7–1–1, OMika-cho, Hitachi Ibaraki 319–12, Japan
Makoto Kaji
Affiliation:
Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd., 4–13–1, Higashi-cho Hitachi, Ibaraki 317, Japan
Get access

Abstract

A new second-order nonlinear optical organic Material, 8-(4′-acetylphenyl)-l,4-dioxa-8-azaspiro[4.5]decane (APDA) was synthesized as a frequency doubler emitting blue light. Its crystal growth, linear and non-linear optical properties were evaluated. The APDA crystal has a short cutoff wavelength of 384 nm and high nonlinear optical coefficients d33=50 pm/V and d32=7 pm/V. The crystal is phase matchable below wavelengths of 800nm, and its maximum effective nonlinear coefficient is 14.9 pm/V. Type I phase-Matched second harmonic generations can be carried out with YAG and Ti-sapphire laser pumping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Itoh, S., Okuyama, H., Matsumoto, S., Nakayama, N., Ohata, T., Miyajima, T., Ishibashi, A., and Akimoto, K., Electronics Lett. 29, 766 (1993).CrossRefGoogle Scholar
[2] Tatsuno, K., Takahashi, M., Muraoka, K., Sugiyama, H., Nakamura, J., Ando, T., and Miyai, T., Jpn. J. Appl. Phys. 31, Part 1, No. 2B, 601 (1992).Google Scholar
[3] Kerkloc, P., Bosshard, C.h., Arend, H., and Gunter, P., Appl. Phys. Lett. 54, 487 (1989).CrossRefGoogle Scholar
[4] Andreazza, P., Lefaucheux, F., Robert, M.C., Josse, D., and Zyss, J., J. Appl. Phys. 68, 8 (1990).Google Scholar
[5] Sasaki, T., in NONLINEAR OPTICS Fundamentals. Materials and Devices edited by Miyata, S. (Elsevier Science Publishers, Amsterdam, 1992) pp. 445.Google Scholar
[6] Kondo, T., Morita, R., Ogasawara, N., UMegaki, S., and Ito, R., Jpn. J. Appl. Phys. 28, 1622 (1989).CrossRefGoogle Scholar
[7] Harada, A., Okazaki, Y., and Kamiyama, K., Appl. Phys. Lett. 59, 1535 (1991).Google Scholar
[8] Ogawa, K., Kaji, M., Kagawa, H., Sagawa, M., and Kakuta, A. (unpublished).Google Scholar
[9] McArdle, B.J., Sherwood, J.N., and Damask, A.C., J. Crystal Growth 22, 193 (1974).CrossRefGoogle Scholar
[10] Sloan, G.J., Molecular Crystals 2, 323 (1967).Google Scholar
[11] Karl, N., in Crystals. Vol. 4. edited by Freyhardt, H.C. (Springer-Verlag, 1980) pp. 59.Google Scholar
[12] Jackson, K.A., Ullman, D.R., and Hunt, J.D., J. Crystal Growth, 1, 1 (1967).Google Scholar
[13] Laue pattern was calculated with XLAUE Ver. 3.03, (Y. EMura, 1991).Google Scholar
[14] Kitaoka, Y., Sasaki, T., Nakai, S., and Goto, Y., Appl. Phys. Lett., 59 (1), 19 (1991).Google Scholar
[15] Sagawa, M., Kagawa, H., Kaji, M., and Kakuta, A., Appl. Phys. Lett. 63, 1877 (1993).Google Scholar