No CrossRef data available.
Published online by Cambridge University Press: 22 February 2011
This paper presents the results of atomistic studies of grain boundaries in NiAl B2 alloy. The interatomic forces are described by Finnis-Sinclair type N-body potentials, and are fitted to properties of NiAl. The results show that the structure, energy and cohesive strength of a grain boundary depend strongly on its chemistry, and a grain boundary possessing more Al is the weakest. Energies of antisite defects at the grain boundary ∑5 {210} are also calculated, and the results suggest that Al has much larger tendency to segregate at a grain boundary than Ni does.