Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T07:40:00.806Z Has data issue: false hasContentIssue false

Atomic layer deposition ZnO film as seed layer for hydrothermal growth of ZnO nanorods

Published online by Cambridge University Press:  01 February 2011

Xianglin Li
Affiliation:
[email protected], Nanyang Technological University, Physics and Applied Physics, Singapore, Singapore
Chuanwei Cheng
Affiliation:
[email protected], Nanyang Technological University, Physics and Applied Physics, Singapore, Singapore
Hongjin Fan
Affiliation:
Get access

Abstract

Atomic layer deposition (ALD) ZnO film as seed layer for growing aligned ZnO nanorods arrays is demonstrated. The effects of the deposition temperature and film thickness to the morphology of the ZnO nanorods are studied. The ALD is found to have its advantage over the conventional dip-coating method when being applied to three-dimensional (3D) substrates, as exemplified by the macroporous Si adn CNT arrays. As one example, the CNT-ZnO 3D hybrid nanostructures are obtained which might be useful for energy-related applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Klingshirn, C. Phys. Status Solidi b244, 3027 (2007)Google Scholar
2 Willander, M. Nur, O. Zhao, Q. X. Yang, L. L. Lorenz, M. Cao, B. Q. Perez, J. Z. Czekalla, C. Zimmermann, G. Grundmann, M. Bakin, A. Behrends, A. Al-Suleiman, M., El-Shaer, A., Mofor, A. C. Postels, B. A.Waag, Boukos, N. Travlos, A. Kwack, H. S. Guinard, J. and Dang, D. L. S. Nanotechnology 20, 332001 (2009)Google Scholar
3 Huang, M. H. Mao, S., Feick, H. Yan, H. Wu, Y. Kind, H. Weber, E. Russo, R. Yang, P. Science 292, 1897 (2001)Google Scholar
4 Boschloo, G. Edvinsson, T. Hagfeldt, A. in Nanostructured Materials for Solar Energy Conversion, (Ed. Soga, T.), Elsevier, 227254 (2006)Google Scholar
5 Park, W. I. Yi, G. C. Adv. Mater. 16, 87 (2004)Google Scholar
6 Tseng, Y. K. Huang, C. J. Cheng, H. M. Lin, I. N. Liu, K. S. Chen, I. C. Adv. Funct. Mater. 13, 811 (2003)Google Scholar
7 Jamil, E. Claude, L. C. Mikhael, B. Johann, M. Wang, G. Y. Zhao, W. and Laetitia, P. Adv. Mater. 22, 1 (2010)Google Scholar
8 Ng, H. T. Li, J. Smith, M. K. Nguyen, P. Cassell, A. Han, J. Meyyappan, M. Science 300, 1249 (2003)Google Scholar
9 Wang, Z. Q., Liu, X. D. Gong, J. F. Huang, H. B. Gu, S. L. and Yang, S. G. Crystal Growth & Design 8, 3911 (2008)Google Scholar
10 Vayssieres, L. Adv. Mater., 15, 464 (2003)Google Scholar
11 Knez, M. Nielsch, K. and Niinistö, L., Adv. Mater. 19, 3425 (2007)Google Scholar
12 Ott, A. W. and Chang, R. P. H, Mater. Chem. Mater. Phys. 58, 132 (1999)Google Scholar
13 Guziewicz, E. Kowalik, I. A. Godlewski, M. Kopalko, K. Osinniy, V. Wojcik, A. Yatsunenko, S. Lusakowska, E. Paszkowicz, W. Guziewicz, M. J. Appl. Phys. 103, 033515 (2008)Google Scholar
14 Elam, J. W. and George, S. M. Chem. Mater. 15, 1020 (2003)Google Scholar
15 Lee, B. Park, S. Y. Kim, H. C. Cho, K. J. Vogel, E. M. Kim, M. J. Wallace, R. M. and Kim, J. Appl. Phys. Lett. 92, 203102 (2008)Google Scholar
16 Pitzschel, K. Moreno, M. M. J. Escrig, Josep Albrecht, O. Nielsch, K. Bachmann, J. ACS Nano 3, 3463 (2009).Google Scholar
17 Zhang, W. D. Nanotechnology 17, 1036 (2006)Google Scholar
18 Cheng C, W, Liu, B, Yang H, Y, Zhou W, W, Sun, L, Chen, R, Yu, S F, Zhang J X, Gong H, Sun H D, and Fan H, J 2009 ACS NANO 3 3069Google Scholar