Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T07:44:37.719Z Has data issue: false hasContentIssue false

Applications of ZnS:Mn2+ nanocrystals

Published online by Cambridge University Press:  21 March 2011

J. F. Suyver*
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
A. Meijerink
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
J. J. Kelly
Affiliation:
Debye Institute, Physics and Chemistry of Condensed Matter, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands.
*
1 Corresponding author. Tel.: +31-30-2532214; Fax: +31-30-2532403; E-mail: [email protected]
Get access

Abstract

Nonstoichiometric precursor-ratios for the synthesis of ZnS:Mn2+ are discussed and the significant influence on the luminescence features and crystal size is explained. From the temperature quenching of the ZnS photoluminescence a luminescence excitation model is proposed. Measurements of the photoelectrochemical properties of nanocrystalline ZnS electrodes doped with Mn2+ are also presented and discussed. The observation of both anodic and cathodic photocurrent is direct evidence for the nanocrystalline nature of the system. In-situ photoluminescence measurements showed stable Mn2+ related photoluminescence over a large potential range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hodes, G., Howell, I. D. J. and Peter, L. M., J. Electrochem. Soc. 139, 3136 (1992).Google Scholar
[2] Greenham, N. C., Peng, X. and Alivisatos, A. P., Phys. Rev. B 54, 17628 (1996).Google Scholar
[3] Leeb, J., Gebhardt, V., et al., J. Phys. Chem. B 103, 7839 (1999).Google Scholar
[4] Sooklal, K., Cullum, B. S., Angel, S. M. and Murphy, C. J., J. Phys. Chem. 100, 4551 (1996).Google Scholar
[5] van Dijken, A., Janssen, A. H., Smitsman, M. H. P., Vanmaekelbergh, D. and Meijerink, A., Chem. Mater. 10, 3513 (1998).Google Scholar
[6] Huang, J., Yang, Y., Xue, S., Yang, B., Liu, S. and Shen, J., Appl. Phys. Lett. 70, 2335 (1997).Google Scholar
[7] Yu, I., Isobe, T. and Senna, M., J. Phys. Chem. Solids 57, 373 (1996).Google Scholar
[8] Suyver, J. F., Wuister, S. F., Kelly, J. J. and Meijerink, A., To be submitted for publication, (2001).Google Scholar
[9] Cullity, B. D., Elements of X-ray diffraction (Addison-Wesley, Massachusetts), page 102 (1978).Google Scholar
[10] Ouyang, J., Fang, F. F. and Bard, A. J., J. Electrochem. Soc. 136, 1033 (1989).Google Scholar
[11] Becker, W. G. and Bard, A. J., J. Phys. Chem. 87, 4888 (1983).Google Scholar
[12] Suyver, J. F., Bakker, R., Meijerink, A. and Kelly, J. J., Phys. Stat. Sol. B 224, 307 (2001).Google Scholar