Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:02:23.375Z Has data issue: false hasContentIssue false

The Adhesion Nature of Ag/MgO Interface: Hartree-Fock Study

Published online by Cambridge University Press:  10 February 2011

E. Heifets
Affiliation:
The University of Latvia, 19 Rainis Blvd., Riga LV-1586, [email protected]
E. A. Kotomin
Affiliation:
The University of Latvia, 19 Rainis Blvd., Riga LV-1586, [email protected]
Get access

Abstract

The atomic and electronic structure of the Ag/MgO interface are calculated using the ab initio Hartree-Fock approach and a supercell model. The electronic density distribution is analyzed in detail for isolated and interacting slabs of a metal and MgO. The energetically most favorable adsorption position for Ag atoms is found to be above the O atoms. The binding energy is 0.20 eV (0.41 eV) for one and three Ag layers atop MgO substrate, respectively. The relevant equilibrium Ag-O distance is 2.64 Å(2.41 Å). Neither appreciable charge transfer in the interfacial region, nor considerable population of bonds between the silver layer and the insulating substrate take place. The adhesion energy arises mainly due to the electrostatic interaction of substrate atoms with a complicated charge redistribution in the metal monolayer, characterized by large quadrupole moments and electron density redistribution towards gap position in the middle of nearest Ag atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Finnis, M., J. Phys: Condens. Matter, 8, 5811 (1996) (a review article)Google Scholar
2. Ernst, F., Mater. Science and Engineering, R14, No 3, 97, (1995) (a review article)Google Scholar
3. Stoneham, A.M., Ramos, M.M.D., and Sutton, A.P., Phil. Mag. A67, 797 (1993).Google Scholar
Stoneham, A.M., Harding, J. and Harker, T., MRS Bulletin 21, No 2, 29 (1996).Google Scholar
4. Trampert, A., Ernst, F., Flynn, C.P., Fishmeister, H.F., and Riihle, M., Acta Metall. Mater., Suppl., 40, S 227 (1992).Google Scholar
Guenard, P., Renaud, G., Villette, B., Yang, M.-H., and Flynn, C.P., Scripta Metall, et Mater., 31, 1221 (1994).Google Scholar
5. Schönberger, U., Andersen, O.K., and Methfessel, M., Acta Metall. Mater., Suppl., 40, S1 (1992).Google Scholar
6. Li, C., Wu, R., Freeman, A.J., and Fu, C.L., Phys. Rev. B 48, 8317 (1993)Google Scholar
7. Hong, T., Smith, J.R., Srolovitz, D.J., Acta Metali. Mater., 43, 2721 (1995)Google Scholar
8. Dovesi, R., Pisani, C, Roetti, C., Causá, M., and Saunders, V., Crystal-88, Program No. 577, QCPE, Indiana University, Bloomington, 1989 Google Scholar
Pisani, C., Dovesi, R., and Roetti, C. Hartree-Fock ab initio Treatment of Crystalline Systems. (Lecture Notes in Chemistry, 48 Springer, Berlin, 1988)Google Scholar
9. Causá, M., Dovesi, R., Pisani, C., and Roetti, C., Surf. Sci. 175 551 (1986)Google Scholar
Causá, M., Kotomin, E.A., Pisani, C., and Roetti, C., J. Phys: Sol State Phys. 20, 4391 (1987)Google Scholar
10. Causa, M. and Zupan, A., Chem. Phys. Lett. 220, 145 (1994)Google Scholar
11. Heifets, E., Kotomin, E.A. and Orlando, R., J. Phys.: Condens. Matter, 8, 6577 (1996)Google Scholar
12. Kaden, C., Ruggerone, P., Toennies, J.P., Zhang, G., and Benedek, G., Phys. Rev. B 46, 13509 (1992).Google Scholar
Luo, N.S., Ruggerone, P., Toennies, J.P., and Benedek, G. Physica Scripta T49, 584 (1993).Google Scholar