Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T10:00:03.989Z Has data issue: false hasContentIssue false

Zone Descriptions of Film Structure-A Rationale

Published online by Cambridge University Press:  15 February 2011

David A. Smith
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ 07030
A. Ibrahim
Affiliation:
Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, NJ 07030
Get access

Abstract

The Microstructure of films is a result of the interplay of nucleation and growth processes which occur during deposition. A columnar structure is characteristic of films irrespective of the material or the deposition process. The length scale of the microstructure depends systematically on the atomic mobility during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fischer, H., Electrodeposition and Surface Treatment 1, 239 (1972/3).CrossRefGoogle Scholar
2. Movchan, B.A. and Demchishin, S.V., Fiz. Met. Metalloved 28, 653 (1969).Google Scholar
3. Blocher, John M. Jr,, J. Vac. Sci. Technol. 11 (4), 680 (1974).CrossRefGoogle Scholar
4. Thornton, J.A., Annual Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
5. Grovenor, C.R.M., Hentzell, H.T.G. and Smith, D.A., Acta Met. 32, 773 (1984).CrossRefGoogle Scholar
6. Messier, R., Giri, A.P. and Roy, R. A., J. Vac. Sci. Technol. A 2 (2), 500 (1984).CrossRefGoogle Scholar
7. Vook, R.W., Int. Metals Rev. 27, 209 (1982).CrossRefGoogle Scholar
8. Cros, A., Tu, K.N., Smith, D.A and Wiess, B.Z., Appl. Phys. Letters 52, 1311 (1988).CrossRefGoogle Scholar
9. Tumbull, D., Trans. Met. Soc. ATME 191, 661 (1951).Google Scholar
10. Atwater, H.A., Thompson, C.V. and Smith, H.I., J. Appl. Phys. 64, 2337 (1988).CrossRefGoogle Scholar
11. Smith, D.A., in Materials Interfaces, ed. Wolf, D. and Yip, S. (Chapman & Hall, London, 1992), p.212.Google Scholar
12. Gjostein, N.A., in Surface and Interfaces I, ed. by Burke, J.J., Read, N.L. and Wiess, V., (Syracuse University Press, Syracuse, 1967).Google Scholar
13. Nieuwenhuizen, J.M. and Haanstra, H.B., Philips Tech. Rev. 27, 87 (1966).Google Scholar
14. Muller, K.H., J. Appl. Phys. 58 (7), 2573 (1985).CrossRefGoogle Scholar
15. Mader, S., in The Use of Thin Films in Physical Investigations, ed. Anderson, J.C. (Academic Press, New York, 1966).Google Scholar
16. Ohring, Milton, in The Materials Science of Thin Films, 1st ed. (Academic Press, New York, 1992).Google Scholar
17. Smith, D.A., Shih, K.K. and Crowe, J.R., J. Vac. Sci. Tech. A, 6, 1681 (1988).Google Scholar
18. Hunderi, O. and Lonvik, K., 3rd Int. Conf. on Rapidly Quenched Metals, University of Sussex, Brighton, 1, 375 (1978).Google Scholar
19. Eizenberg, M., Segmuller, Armin, Heiblum, M. and Smith, D. A., J. Appl. Phys. 62 (2), 466 (1987).CrossRefGoogle Scholar
20. Palmer, J.E., Thompson, C.V. and Smith, H.I., J. Appl. Phys. 62, 2492 (1987).CrossRefGoogle Scholar
21. Smith, D.A., Tu, K.N. and Wiess, B.Z., Ultramicroscopy 30, 90 (1989).CrossRefGoogle Scholar
22. Bisaro, R., Magarino, J. and Proust, N., J. Appl. Phys. 59 (4), 1167 (1986).CrossRefGoogle Scholar
23. Bloem, J. and Beers, A.M., Thin Solid Films 124, 93 (1985).CrossRefGoogle Scholar
24. Sheppard, K.G. and Nakahara, S., Processing of Advanced Mater. 1, 27 (1991).Google Scholar
25. Bindra, P., Light, D., Freudenthal, P. and Smith, D., J. Electrochem. Soc. 136 (12), 3616 (1989).CrossRefGoogle Scholar
26. Sugita, Kazuyuki and Ueno, Nobuo, J. Electrochem. Soc. 131 (1), 111 (1984).CrossRefGoogle Scholar