Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T16:21:38.467Z Has data issue: false hasContentIssue false

ZnO-Sn Bilayer Ultraviolet (UV) Photon Detector with Improved Responsitivity

Published online by Cambridge University Press:  01 February 2011

Harish Kumar Yadav
Affiliation:
[email protected], University of Delhi, Department of physics and Astrophysics, C\0 Dr Vinay Gupta, Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India, Delhi, 110007, India, 91-11-9873059996
K. Sreenivas
Affiliation:
[email protected], University of Delhi, Department of Physics and Astrophysics, Delhi, 110007, India
Vinay Gupta
Affiliation:
[email protected], University of Delhi, Department of Physics and Astrophysics, Delhi, 110007, India
Get access

Abstract

The influence of the integration of ultra-thin layer of different metals (Al, Cu, Sn, Te, Pb and Au) with the c-axis oriented ZnO thin film on the ultraviolet (UV) photoresponse is investigated. The transfer of electrons from the metal layer to the semiconductor at the interface compensate the surface states which otherwise takes electrons from the interior of ZnO layer and thereby increases the conductivity under UV illumination. The Sn/ZnO sample exhibits a responsivity of the order of 8.5 KV/W at a low UV intensity of 140 μW/cm2 (⎻ = 365 nm) with a fast rise and fall time of 105 and 400 ms respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Law, J. B. K., and Thong, J. T. L., Appl. Phys. Lett. 88, 133114 (2006).Google Scholar
2. Porter, H. L., Cai, A. L., Muth, J. F., and Narayan, J., Appl. Phys. Lett. 86, 211918 (2005).Google Scholar
3. Liang, S., Sheng, H., Liu, Y., Huo, Z., lu, Y., and Shen, H., J. Crystal Growth 225, 110 (2001).Google Scholar
4. Auret, F. D., Goodman, S. A., Hayer, M., Legodi, M. J., Laarhoven, H. A. V., and Look, D. C., Appl. Phys. Lett. 79, 3074 (2001).Google Scholar
5. Moazzami, K., Murphy, T. E., Phillips, J. D., Cheung, M. C. K., and Cartwright, A. N., Semicond. Sci. Technol. 21, 717 (2006).Google Scholar
6. Kumar, S., Gupta, V., and Sreenivas, K., Nanotech. 16, 1167 (2005).Google Scholar
7. Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).Google Scholar
8. Zhang, D. H. and Brodie, D. E., Thin Solid Films 251, 151 (1994).Google Scholar
9. Sharma, P., Sreenivas, K. and Rao, K. V.. J. Appl. Phys. 93,3963 (2003).Google Scholar
10. Studenikin, S. A., Golego, N., and Cocivera, M., J. Appl. Phys. 87, 2413 (2000).Google Scholar
11. Zhang, D. H., J. Phys. D 28, 1273 (1995).Google Scholar