Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T10:23:25.258Z Has data issue: false hasContentIssue false

Transparent Conductive Three-Layered Composite Films Based on Carbon Nanotubes with Improved Mechanical Stability

Published online by Cambridge University Press:  05 February 2014

Hans-Christoph Schwarz
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Andreas M. Schneider
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Stephen Klimke
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Bibin T. Anto
Affiliation:
Bayer Technology Services GmbH, 51368 Leverkusen, Germany
Stefanie Eiden
Affiliation:
Bayer Technology Services GmbH, 51368 Leverkusen, Germany
Peter Behrens
Affiliation:
Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9 30167 Hannover, Germany
Get access

Abstract

A layered composite coating material with favorable properties for application as a transparent conductor is presented. It is composed of layers of three nanoscopic materials, namely zinc oxide nanoparticles, single wall nanotubes, and graphene oxide nanosheets. The electrically conducting layer consists of single wall nanotubes (SWNTs). The layer of zinc oxide nanoparticles acts as a primer. It increases the adhesion and the stability of the films against mechanical stresses. The top layer of graphene oxide enhances the conductivity of such coatings. Such three-layer composite coatings show better conductivity (without compromising transparency) and improved mechanical stability compared to pure SWNT films. The processes used in the preparation of such coatings are easily scalable.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., Rinzler, A. G., Science 305, 12731276 (2004)CrossRefGoogle Scholar
Han, J. T., Kim, J. S., Jo, S. B., Kim, S. H., Kim, J. S., Kang, B., Jeong, H. J., Jeong, S. Y., Lee, G. W. and Cho, K., Nanoscale 4, 77357742 (2012)CrossRefGoogle Scholar
Jacobsson, T. J., Edvinsson, T., Inorg. Chem. 50, 95789586 (2011)CrossRefGoogle Scholar
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W. and Tour, J. M., ACS Nano 4, 48064814 (2010)CrossRefGoogle Scholar
“Paints and varnishes – Determination of film hardness by pencil test”, ISO 15184:1998(E) Google Scholar