Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T20:03:55.312Z Has data issue: false hasContentIssue false

Transformation of Helically Structured Nanofibers into Linearly Oriented Nanofibers

Published online by Cambridge University Press:  01 February 2011

Seon Jeong Kim
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
S. J. Park
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
S. K. Yoon
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
M. S. Kim
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
B. K. Gu
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
I. Y. Kim
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
S. I. Kim
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
S. J. Kim
Affiliation:
[email protected], Hanyang University, Dept. of Biomedical Engineering, Korea, Republic of
Get access

Abstract

Helical structures have been fabricated from a solution of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) in water and ethanol by the whipping instability of a jet in a conventional electrospinning system. The simple modification of the electrospinning system involved introducing two parallel subelectrodes, which enabled the transformation of helical nanofibers into linearly oriented nanofibers due to the tensional forces caused by the modified electric field. This means that the tensional forces caused by the modified electric field had an important effect on linearizing the helical structures. Therefore, a technique using modified electric fields can play a significant role as an intermediary between helical structures and one-dimensional linear structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hochbaum, A. I., Fan, R., He, R., and Yang, P., Nano Lett. 5, 457 (2005).Google Scholar
2. Li, D., Wang, Y. L., Xia, Y. N., Nano Lett. 3, 1167 (2003).Google Scholar
3. Chen, X. Q., In-Hwang, W., Shimada, S., Fujii, M., Iwanaga, H., Motojima, S., J. Mater. Res. 15, 808 (2000).Google Scholar
4. Motojima, S., Chen, Q. Q., J. Appl. Phys. 85, 3919 (1999).Google Scholar
5. Kong, X. Y., Wang, Z. L., Nano Lett. 3, 1625 (2003).Google Scholar
6. Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., Shimizu, T., Chem. Mater. 14, 1445 (2002).Google Scholar
7. Wu, Y., Livneh, T., Zhang, Y. X., Cheng, G., Wang, J., Tang, J., Moskovits, M., Stucky, G. D., Nano Lett. 4, 2337 (2004).Google Scholar
8. Pan, L. J., Zhang, M., Nakayama, Y., J. Appl. Phys. 91, 10058 (2002).Google Scholar
9. Shin, Y. M., Hohman, M. M., Brenner, M. P., Rutledge, G. G., Appl. Phys. Lett. 78, 1149 (2001).Google Scholar
10. Reneker, D. H., Yarin, A. L., Fong, H., Koombhongse, S., J. Appl. Phys. 87, 4531 (2000).Google Scholar
11. Katta, P., Alessandro, M., Ramsier, R. D., Chase, G. G., Nano Lett. 4, 2215 (2004).Google Scholar
12. Kessick, R., Tepper, G., Appl. Phys. Lett. 84, 4807 (2004).Google Scholar