Published online by Cambridge University Press: 10 February 2011
We have used a two-step (low and high temperature) strain-annealing process to evolve the grain boundary character distribution (GBCD) in fully recrystallized oxygen-free electronic (OFE) Cu bar that was forged and rolled. Orientation imaging microscopy (OIM)[1–4] has been used to characterize the GBCD after each step in the processing. The fraction of special grain boundaries, “special fraction,” was ∼70% in the starting recrystallized material. Three different processing conditions were employed: high, moderate, and low temperature. The high-temperature process resulted in a reduction in the fraction of special grain boundaries while both of the lower temperature processes resulted in an increase in special fraction up to 85%. Further, the lower temperature processes resulted in average deviation angles from exact misorientation, for special boundaries, that were significantly smaller than observed from the high temperature process. Results indicate the importance of the low temperature part of the two-step strain-annealing process in preparing the microstructure for the higher temperature anneal and commensurate increase in the special fraction.