Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:21:19.223Z Has data issue: false hasContentIssue false

Three-dimensional Anisotropic Electronic Properties of Solution Grown Organic Single Crystals Measured by Space-Charge Limited Current (SCLC)

Published online by Cambridge University Press:  31 January 2011

Beatrice Fraboni
Affiliation:
[email protected], University of Bologna, Department of Physics, viale Berti Pichat 6/2, Bologna, 40127, Italy
Alessandro Fraleoni-Morgera
Affiliation:
[email protected], Sincrotrone Trieste, Trieste, Italy
Anna Cavallini
Affiliation:
[email protected], University of Bologna, Physics, Bologna, Italy
Get access

Abstract

Organic single crystals offer the interesting and unique opportunity to investigate the intrinsic electrical behaviour of organic materials, excluding hopping phenomena due to grain boundaries and structural imperfections. Their structural asymmetry permits also to investigate the correlation between their three-dimensional order and their charge transport characteristics. Here we report on millimeter-sized, solution-grown organic single crystals, based on 4-hydroxycyanobenzene (4HCB), which exhibit three-dimensional anisotropic electrical properties along the three crystallographic axes a, b (constituting the main crystal flat face) and c (the crystal thickness), measured over several different samples. The carrier mobility was determined by means of space charge limited current (SCLC) and air-gap field effect transistors fabricated with 4HCB single crystals and the measured value well correlate with the structural packing anisotropy of the molecular crystal. A differential analysis of SCLC curves allowed to determine the distribution and the concentration of the dominant electrically active density of states within the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Forrest, S. R. Nature 428, 911 (2004)Google Scholar
2 Facchetti, A. Mater. Today 10, 28 (2007)Google Scholar
3 Boer, R. de, Gershenson, M. Morpurgo, A. Podzorov, V. Phys. Status Solidi A 201, 1302 (2004)Google Scholar
4 Horowitz, G. Garnier, F. Yassar, A. Hajlaoui, R. Kouki, F. Adv. Mater., 8, 52 (1996)Google Scholar
5 Zeis, R. Besnard, C. Siegrist, T. Schlockermann, C. Chi, X. Kloc, C. Chem. Mater., 18, 244 (2006)Google Scholar
6 Menard, E. Podzorov, V. Hur, S.-H., Gaur, A. Gershenson, M. E. Rogers, J. A. Adv. Mater., 16, 2097 (2004)Google Scholar
7 Jurchescu, O. D. Baas, J. Palstra, T. T. M. Appl. Phys. Lett. 84, 3061 (2004)Google Scholar
8a) Mannsfeld, S. C. B. Locklin, J. Reese, C. Roberts, M. E. Lovinger, A. J. Bao, Z. Adv. Funct. Mater. 17, 1617 (2007); b) B. Fraboni, I. Mencarelli, L. Setti, C. Femoni, R. DiPietro, A. Cavallini, A. Fraleoni, Adv.Mater. 2009 in pressGoogle Scholar
9 Fraboni, B. DiPietro, R. Castaldini, A. Cavallini, A. A. Fraleoni Morgera, Setti, L. Mencarelli, I., Femoni, C. Org. El., 9, 974 (2008)Google Scholar
10 Stassen, A. F. Boer, R. W. I. De, Losad, N. N. Morpurgo, A. F. Appl. Phys. Lett. 85, 3899 (2004)Google Scholar
11 Takeya, J. et al. , Phys. Rev. Lett. 98, 196804 (2007)Google Scholar
12 Lampert, M. and Mark, P. in: Current Injection in Solids, Academic Press, New York, 1970.Google Scholar
13 Sworakowski, J. Nespurek, S. Vacuum 38, 7 (1989)Google Scholar
14 Braga, D. Battaglini, N. Yassar, A. Horowitz, G. Phys. Rev. B, 77, 115205 (2008)Google Scholar
15 Cesca, T. Gasparotto, A. Fraboni, B. Appl. Phys. Lett. 93, 102114 (2008)Google Scholar
16 Krellner, C. et al. , Phys. Rev. B 75, 245115 (2007)Google Scholar
17 Lang, D. et al. , Phys. Rev. Lett. 93, 76601 (2004)Google Scholar