Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T15:59:29.829Z Has data issue: false hasContentIssue false

A Thermoviscoelastic Approach for Modeling Shape Memory Polymers

Published online by Cambridge University Press:  31 January 2011

Thao D Nguyen*
Affiliation:
[email protected], The Johns Hopkins University, The Department of Mechanical Engineering, 3400 N. Charles St, Latrobe 125, Baltimore, Maryland, 21218, United States, 410-516-4538
Get access

Abstract

This paper presents a thermoviscoelastic model for shape memory polymers (SMPs). The model has been developed base on the hypothesis that structural and stress relaxation are the primary shape memory mechanisms of crosslinked, glassy SMP, and that consideration of these mechanisms is essential for predicting the time-dependence of the shape memory response. Comparisons with experiments show that the model can reproduce the rate-dependent strain-temperature and stress-strain response of a crossslinked, glassy SMP. The model also captures many important features of the temperature and time dependence of the free strain recovery and constrained stress recovery response.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lendlein, A. Kelch, S. Kratz, K. Schulte, J., “Shape, Shape-memory Polymers”, In: Encyclopedia of Materials: Science and Technology, (Elsevier 2005), pp. 19.Google Scholar
2 Qi, H.J., Nguyen, T.D., Castro, F. Yakacki, C. Shandas, R. J. Mech. Phys. Solids, 56, 17301751 (2008).10.1016/j.jmps.2007.12.002Google Scholar
3 Liu, Y. Gall, K. Dunn, M.L. Greenberg, A.R., Diani, J., Int. J., Plasticity 22, 279313, (2006).10.1016/j.ijplas.2005.03.004Google Scholar
4 Chen, Y-.C. and Lagoudas, D.C.. J. Mech. Phys. Solids, 56, 17521765 (2008).10.1016/j.jmps.2007.12.005Google Scholar
5 Nguyen, T.D. Qi, H.J. Castro, F. Long, K.N. J. Mech. Phys. Solids, 56, pp. 27922814 (2008).10.1016/j.jmps.2008.04.007Google Scholar
6 Tool, A.Q. J. Am Am. Ceram. Soc., 29, 240253 (1946).10.1111/j.1151-2916.1946.tb11592.xGoogle Scholar
7 Scherer, G.W. J. Am. Ceram. Soc., 67, 504 (1984).10.1111/j.1151-2916.1984.tb19643.xGoogle Scholar
8 Hodge, I. J. of Res. of the NIST, 102, 195205 (1997).10.6028/jres.102.015Google Scholar
9 Adam, G. and Gibbs, J.H. J. Chem. Phys., 43, 139146 (1965).10.1063/1.1696442Google Scholar
10 Arruda, E.M. and Boyce, M.C. J. Mech. Phys. Solids, 41, 389412 (1993).10.1016/0022-5096(93)90013-6Google Scholar
11 Eyring, H. J. Chem. Phys., 4, 283291 (1968)10.1063/1.1749836Google Scholar