Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T18:36:49.209Z Has data issue: false hasContentIssue false

Temperature Effects in Al 5083 with a Bimodal Grain Size

Published online by Cambridge University Press:  29 April 2013

Andrew C. Magee
Affiliation:
The University of Alabama, Mechanical Engineering, Tuscaloosa, AL 35487, U.S.A.
Leila J. Ladani
Affiliation:
The University of Alabama, Mechanical Engineering, Tuscaloosa, AL 35487, U.S.A.
Get access

Abstract

An Al 5083 alloy with a bimodal grain size has been previously synthesized using a low-temperature milling process and consolidation via cold isostatic pressing (CIP). This material has been shown to exhibit greatly improved strength when compared to conventional aluminum alloys. Additionally, this material has shown sensitivity to test conditions. In this work, we studied the effects of temperature on the strain rate sensitivity of this material by examining its elastic and plastic properties though uniaxial tension tests conducted under a variety of conditions at temperatures up to 473 K. Serrated stress-strain curves were observed, indicating dynamic strain aging. Strain rate sensitivity was found to depend non-monotonically on the test temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Youssef, K.M., Scattergood, R.O., Murty, K.L., and Koch, C.C., Scr.Mater. 54 (2), 251 (2006).10.1016/j.scriptamat.2005.09.028CrossRefGoogle Scholar
Han, B., Ye, J., Tang, F., Schoenung, J., and Lavernia, E., J.Mater.Sci. 42 (5), 1660 (2007).10.1007/s10853-006-0907-9CrossRefGoogle Scholar
Witkin, D.B. and Lavernia, E.J., Prog. Mater. Sci. 51 (1), 1 (2006).10.1016/j.pmatsci.2005.04.004CrossRefGoogle Scholar
Ahn, B.M., Lavernia, E.J., and Nutt, S.R., J. Mater. Sci. 43, 7403 (2008).10.1007/s10853-008-2950-1CrossRefGoogle Scholar
Han, B.Q., Huang, Y.J., Zhu, Y.T., and Lavernia, E.J., Acta Mater. 54 (11), 3015 (2006).10.1016/j.actamat.2006.02.045CrossRefGoogle Scholar
Han, B.Q., Lavernia, E.J., Lee, Z., Nutt, S., and Witkin, D., Metall. Mater. Trans. A 36 (4), 957 (2005).10.1007/s11661-005-0289-7CrossRefGoogle Scholar
Lee, Z., Radmilovic, V., Ahn, B., Lavernia, E.J., and Nutt, S.R., Metall. Mater. Trans. A 41 (4), 795 (2010).10.1007/s11661-009-0007-yCrossRefGoogle Scholar
Lee, Z., Witkin, D.B., Radmilovic, V., Lavernia, E.J., and Nutt, S.R., Mat. Sci. Eng. A 410, 462 (2005).10.1016/j.msea.2005.08.104CrossRefGoogle Scholar
Witkin, D., Lee, Z., Rodriguez, R., Nutt, S., and Lavernia, E., Scripta Mater. 49 (4), 297 (2003).10.1016/S1359-6462(03)00283-5CrossRefGoogle Scholar
Fan, G.J., Choo, H., Liaw, P.K., and Lavernia, E.J., Acta Mater. 54 (7), 1759 (2006).10.1016/j.actamat.2005.11.044CrossRefGoogle Scholar
Fan, G.J., Wang, G.Y., Choo, H., Liaw, P.K., Park, Y.S., Han, B.Q., and Lavernia, E.J., Scr. Mater. 52 (9), 929 (2005).10.1016/j.scriptamat.2004.12.028CrossRefGoogle Scholar
Han, B.Q., Huang, J.Y., Zhu, Y.T., and Lavernia, E.J., Scr. Mater. 54 (6), 1175 (2006).10.1016/j.scriptamat.2005.11.035CrossRefGoogle Scholar
Magee, A., Ladani, L., Topping, T.D., and Lavernia, E.J., Acta Mater. 60 (16), 5838 (2012).10.1016/j.actamat.2012.07.024CrossRefGoogle Scholar
Witkin, D., , D., Han, B.Q., and Lavernia, E.J., J. Mater. Eng. Perform. 14 (4), 519 (2005).10.1361/105994905X56232CrossRefGoogle Scholar