Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T10:22:33.473Z Has data issue: false hasContentIssue false

Synthesis of Nanostructured Antimony Telluride for Thermoelectric Applications

Published online by Cambridge University Press:  16 February 2015

Yichen Zhao
Affiliation:
Department of Materials and Nano Physics, KTH Royal Institute of Technology, SE 16 440, Kista-Stockholm, Sweden.
Abhilash Sugunan
Affiliation:
Chemistry, Materials and Surfaces Unit, SP Technical Research Institute of Sweden, SE 114 86, Stockholm, Sweden
Mamoun Muhammed
Affiliation:
Department of Materials and Nano Physics, KTH Royal Institute of Technology, SE 16 440, Kista-Stockholm, Sweden.
Muhammet S. Toprak
Affiliation:
Department of Materials and Nano Physics, KTH Royal Institute of Technology, SE 16 440, Kista-Stockholm, Sweden.
Get access

Abstract

Thermoelectric (TE) materials have been studied during past decades since they can generate electricity directly from waste heat. Antimony chalcogenides (Sb2M3, M = S, Se, Te) are well known as one of the promising candidates among the inorganic TE materials. We report on the synthesis of Sb2Te3 nanoparticle via thermolysis method. A systematic study was done to investigate the effect of reaction time and ratio between the precursors as well as the method of cooling on the morphology and composition of obtained nanoparticles. The ratio between precursors was varied to study the effect on the morphology. Furthermore, the high purity phase Sb2Te3 was obtained by a rapid cooling process.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, G.H., Hwang, D.H., Woo, S.I., Phys. Chem. Chem. Phys. 14, 3530 (2012).CrossRefGoogle Scholar
Chen, G., Dneg, B., Cai, G., Zhang, T., Dong, W., 3, 672 (2008).Google Scholar
Christian, P., O’Brien, P., Mater, J.. Chem. 15, 4949 (2005).Google Scholar
Erdoğan, İ.Y., Demir, Ü., J. Electroanal. Chem. 633, 253 (2009).CrossRefGoogle Scholar
Saleemi, M., Ruditskiy, a., Toprak, M.S., Stingaciu, M., Johnsson, M., Kretzschmar, I., Jacquot, a., Jägle, M., Muhammed, M., J. Electron. Mater. 43, 1927 (2013).CrossRefGoogle Scholar
Yavorsky, B.Y., Hinsche, N.F., Mertig, I., Zahn, P., Phys. Rev. B 84, 165208 (2011).CrossRefGoogle Scholar
Guo, L., Ji, G., Chang, X., Zheng, M., Shi, Y., Zheng, Y., Nanotechnology 21, 035606 (2010).CrossRefGoogle Scholar
Zhou, B., Zhu, J.J., Nanotechnology 20, 085604 (2009).CrossRefGoogle Scholar
Dong, G.H., Zhu, Y.J., Chen, L.D., J. Mater. Chem. 20, 1976 (2010).CrossRefGoogle Scholar
Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.Y., Park, J.-H., Hwang, N.-M., Hyeon, T., Nat. Mater. 3, 891 (2004).CrossRefGoogle Scholar
Du, Y., Yin, Z., Zhu, J., Huang, X., Wu, X.-J., Zeng, Z., Yan, Q., Zhang, H., Nat. Commun. 3, 1177 (2012).CrossRefGoogle Scholar
Kim, H.J., Lee, K.J., Kim, S.J., Han, M.K., Bull. Korean Chem. Soc. 31, 1123 (2010).CrossRefGoogle Scholar
Schmidt, H., U.S. Patent No. 2 229 992 (28 January 1941).Google Scholar
Lu, Y., Miller, J.D., J. Colloid Interface Sci. 256, 41 (2002).CrossRefGoogle Scholar
Papageorgiou, S.K., Kouvelos, E.P., Favvas, E.P., Sapalidis, A. a, Romanos, G.E., Katsaros, F.K., Carbohydr. Res. 345, 469 (2010).CrossRefGoogle Scholar
Sugunan, A., Jafri, S.H.M., Qin, J., Blom, T., Toprak, M.S., Leifer, K., Muhammed, M., J. Mater. Chem. 20, 1208 (2010).CrossRefGoogle Scholar
sugunan, A., Warad, H. C., Boman, M., Dutta, J., J Sol-Gel Sci Techn 39, 49, (2006).CrossRefGoogle Scholar
Zhao, C., Cao, X., Lan, X., Mater. Lett. 61, 5083 (2007).CrossRefGoogle Scholar